Extended best polynomial approximation operator in Orlicz Spaces
- Autores
- Acinas, Sonia Ester; Favier, Sergio José; Zo, Felipe
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we consider the best polynomial approximation operator, defined in an Orlicz space L Φ(B), and its extension to L ϕ(B) where ϕ is the derivative function of Φ. A characterization of these operators and several properties are obtained.
Fil: Acinas, Sonia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de La Pampa; Argentina
Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; Argentina
Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; Argentina - Materia
-
Orlicz Spaces
Best Polynomial Phi-Approximation Operators
Extended Best Polynomial Approximation From L^Phi to L^Varphi - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14812
Ver los metadatos del registro completo
id |
CONICETDig_1fefd0902e9ba4d97a9bb6b720898b8d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14812 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Extended best polynomial approximation operator in Orlicz SpacesAcinas, Sonia EsterFavier, Sergio JoséZo, FelipeOrlicz SpacesBest Polynomial Phi-Approximation OperatorsExtended Best Polynomial Approximation From L^Phi to L^Varphihttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we consider the best polynomial approximation operator, defined in an Orlicz space L Φ(B), and its extension to L ϕ(B) where ϕ is the derivative function of Φ. A characterization of these operators and several properties are obtained.Fil: Acinas, Sonia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de La Pampa; ArgentinaFil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; ArgentinaFil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; ArgentinaTaylor & Francis2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14812Acinas, Sonia Ester; Favier, Sergio José; Zo, Felipe; Extended best polynomial approximation operator in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 36; 7; 4-2015; 817-8290163-0563enginfo:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2015.1040161info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/full/10.1080/01630563.2015.1040161info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:23Zoai:ri.conicet.gov.ar:11336/14812instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:24.012CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Extended best polynomial approximation operator in Orlicz Spaces |
title |
Extended best polynomial approximation operator in Orlicz Spaces |
spellingShingle |
Extended best polynomial approximation operator in Orlicz Spaces Acinas, Sonia Ester Orlicz Spaces Best Polynomial Phi-Approximation Operators Extended Best Polynomial Approximation From L^Phi to L^Varphi |
title_short |
Extended best polynomial approximation operator in Orlicz Spaces |
title_full |
Extended best polynomial approximation operator in Orlicz Spaces |
title_fullStr |
Extended best polynomial approximation operator in Orlicz Spaces |
title_full_unstemmed |
Extended best polynomial approximation operator in Orlicz Spaces |
title_sort |
Extended best polynomial approximation operator in Orlicz Spaces |
dc.creator.none.fl_str_mv |
Acinas, Sonia Ester Favier, Sergio José Zo, Felipe |
author |
Acinas, Sonia Ester |
author_facet |
Acinas, Sonia Ester Favier, Sergio José Zo, Felipe |
author_role |
author |
author2 |
Favier, Sergio José Zo, Felipe |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Orlicz Spaces Best Polynomial Phi-Approximation Operators Extended Best Polynomial Approximation From L^Phi to L^Varphi |
topic |
Orlicz Spaces Best Polynomial Phi-Approximation Operators Extended Best Polynomial Approximation From L^Phi to L^Varphi |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we consider the best polynomial approximation operator, defined in an Orlicz space L Φ(B), and its extension to L ϕ(B) where ϕ is the derivative function of Φ. A characterization of these operators and several properties are obtained. Fil: Acinas, Sonia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de La Pampa; Argentina Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; Argentina Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; Argentina |
description |
In this article we consider the best polynomial approximation operator, defined in an Orlicz space L Φ(B), and its extension to L ϕ(B) where ϕ is the derivative function of Φ. A characterization of these operators and several properties are obtained. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14812 Acinas, Sonia Ester; Favier, Sergio José; Zo, Felipe; Extended best polynomial approximation operator in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 36; 7; 4-2015; 817-829 0163-0563 |
url |
http://hdl.handle.net/11336/14812 |
identifier_str_mv |
Acinas, Sonia Ester; Favier, Sergio José; Zo, Felipe; Extended best polynomial approximation operator in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 36; 7; 4-2015; 817-829 0163-0563 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2015.1040161 info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/full/10.1080/01630563.2015.1040161 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268791429398528 |
score |
13.13397 |