Sequential design of dynamic experiments in modeling for optimization of biological processes
- Autores
- Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. A methodology for model-based design of dynamic experiments in modeling for optimization is proposed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 whose DNA has been cloned in an E. coli strain. A library of tendency models is used to increasingly bias bioreactor operating conditions towards an optimum. Parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA). At each iteration, the ´most informative´ tendency model is used for designining the next dynamic experiment. Model selection is based on minimizing an error measure which separates parametric uncertainty from structural errors to trade-off exploration with exploitation.
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Dynamic Experiments
Experimental Design
Modeling
Optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/83834
Ver los metadatos del registro completo
id |
CONICETDig_2e9897149a924523bb2db5240c249ec3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/83834 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sequential design of dynamic experiments in modeling for optimization of biological processesCristaldi, Mariano DanielGrau, Ricardo José AntonioMartínez, Ernesto CarlosDynamic ExperimentsExperimental DesignModelingOptimizationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. A methodology for model-based design of dynamic experiments in modeling for optimization is proposed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 whose DNA has been cloned in an E. coli strain. A library of tendency models is used to increasingly bias bioreactor operating conditions towards an optimum. Parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA). At each iteration, the ´most informative´ tendency model is used for designining the next dynamic experiment. Model selection is based on minimizing an error measure which separates parametric uncertainty from structural errors to trade-off exploration with exploitation.Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaElsevier B.V.2009-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83834Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Sequential design of dynamic experiments in modeling for optimization of biological processes; Elsevier B.V.; Computer Aided Chemical Engineering; 27; C; 8-2009; 369-3741570-7946CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S1570-7946(09)70282-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:30Zoai:ri.conicet.gov.ar:11336/83834instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:31.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sequential design of dynamic experiments in modeling for optimization of biological processes |
title |
Sequential design of dynamic experiments in modeling for optimization of biological processes |
spellingShingle |
Sequential design of dynamic experiments in modeling for optimization of biological processes Cristaldi, Mariano Daniel Dynamic Experiments Experimental Design Modeling Optimization |
title_short |
Sequential design of dynamic experiments in modeling for optimization of biological processes |
title_full |
Sequential design of dynamic experiments in modeling for optimization of biological processes |
title_fullStr |
Sequential design of dynamic experiments in modeling for optimization of biological processes |
title_full_unstemmed |
Sequential design of dynamic experiments in modeling for optimization of biological processes |
title_sort |
Sequential design of dynamic experiments in modeling for optimization of biological processes |
dc.creator.none.fl_str_mv |
Cristaldi, Mariano Daniel Grau, Ricardo José Antonio Martínez, Ernesto Carlos |
author |
Cristaldi, Mariano Daniel |
author_facet |
Cristaldi, Mariano Daniel Grau, Ricardo José Antonio Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Grau, Ricardo José Antonio Martínez, Ernesto Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Dynamic Experiments Experimental Design Modeling Optimization |
topic |
Dynamic Experiments Experimental Design Modeling Optimization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. A methodology for model-based design of dynamic experiments in modeling for optimization is proposed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 whose DNA has been cloned in an E. coli strain. A library of tendency models is used to increasingly bias bioreactor operating conditions towards an optimum. Parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA). At each iteration, the ´most informative´ tendency model is used for designining the next dynamic experiment. Model selection is based on minimizing an error measure which separates parametric uncertainty from structural errors to trade-off exploration with exploitation. Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. A methodology for model-based design of dynamic experiments in modeling for optimization is proposed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 whose DNA has been cloned in an E. coli strain. A library of tendency models is used to increasingly bias bioreactor operating conditions towards an optimum. Parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA). At each iteration, the ´most informative´ tendency model is used for designining the next dynamic experiment. Model selection is based on minimizing an error measure which separates parametric uncertainty from structural errors to trade-off exploration with exploitation. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/83834 Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Sequential design of dynamic experiments in modeling for optimization of biological processes; Elsevier B.V.; Computer Aided Chemical Engineering; 27; C; 8-2009; 369-374 1570-7946 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/83834 |
identifier_str_mv |
Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Sequential design of dynamic experiments in modeling for optimization of biological processes; Elsevier B.V.; Computer Aided Chemical Engineering; 27; C; 8-2009; 369-374 1570-7946 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/S1570-7946(09)70282-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614458107756544 |
score |
13.070432 |