Optimal design of dynamic experiments in the development of cybernetic models for bioreactors
- Autores
- Luna, Martín Francisco; Martínez, Ernesto Carlos
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cybernetic models of bioreactors are appealing due to their capacity to account for regulatory mechanisms in cell metabolism by modeling the synthesis of enzymes and their activities. For a given objective of interest, experimental data used to fit the cybernetic model parameters should be maximally informative. To excite purposefully the most relevant metabolic pathways, a dynamic experiment is designed by accounting for the sensitivity of the chosen objective to time-varying operating conditions. In this work, the bioreactor feeding profile and sampling times are designed to maximize the information content. A Bayesian optimization approach is proposed to solve the resulting mathematical program. As a case study, biomass production is used as the objective to be maximized in fed-batch cultivation of Saccharomyces cerevisiae growing on glucose as a carbon source. Experimental results demonstrate that the proposed approach helps to iteratively improve a cybernetic model by designing experiments that maximize the information content.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
BAYESIAN OPTIMIZATION
CYBERNETIC MODEL
DESIGN OF DYNAMIC EXPERIMENTS
GLOBAL SENSITIVITY ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87042
Ver los metadatos del registro completo
| id |
CONICETDig_a5140bfff7b378abd6ea56303a643b43 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87042 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Optimal design of dynamic experiments in the development of cybernetic models for bioreactorsLuna, Martín FranciscoMartínez, Ernesto CarlosBAYESIAN OPTIMIZATIONCYBERNETIC MODELDESIGN OF DYNAMIC EXPERIMENTSGLOBAL SENSITIVITY ANALYSIShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Cybernetic models of bioreactors are appealing due to their capacity to account for regulatory mechanisms in cell metabolism by modeling the synthesis of enzymes and their activities. For a given objective of interest, experimental data used to fit the cybernetic model parameters should be maximally informative. To excite purposefully the most relevant metabolic pathways, a dynamic experiment is designed by accounting for the sensitivity of the chosen objective to time-varying operating conditions. In this work, the bioreactor feeding profile and sampling times are designed to maximize the information content. A Bayesian optimization approach is proposed to solve the resulting mathematical program. As a case study, biomass production is used as the objective to be maximized in fed-batch cultivation of Saccharomyces cerevisiae growing on glucose as a carbon source. Experimental results demonstrate that the proposed approach helps to iteratively improve a cybernetic model by designing experiments that maximize the information content.Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaInstitution of Chemical Engineers2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87042Luna, Martín Francisco; Martínez, Ernesto Carlos; Optimal design of dynamic experiments in the development of cybernetic models for bioreactors; Institution of Chemical Engineers; Chemical Engineering Research & Design; 136; 8-2018; 334-3460263-8762CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0263876218302752?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cherd.2018.05.036info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:06:06Zoai:ri.conicet.gov.ar:11336/87042instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:06:06.343CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Optimal design of dynamic experiments in the development of cybernetic models for bioreactors |
| title |
Optimal design of dynamic experiments in the development of cybernetic models for bioreactors |
| spellingShingle |
Optimal design of dynamic experiments in the development of cybernetic models for bioreactors Luna, Martín Francisco BAYESIAN OPTIMIZATION CYBERNETIC MODEL DESIGN OF DYNAMIC EXPERIMENTS GLOBAL SENSITIVITY ANALYSIS |
| title_short |
Optimal design of dynamic experiments in the development of cybernetic models for bioreactors |
| title_full |
Optimal design of dynamic experiments in the development of cybernetic models for bioreactors |
| title_fullStr |
Optimal design of dynamic experiments in the development of cybernetic models for bioreactors |
| title_full_unstemmed |
Optimal design of dynamic experiments in the development of cybernetic models for bioreactors |
| title_sort |
Optimal design of dynamic experiments in the development of cybernetic models for bioreactors |
| dc.creator.none.fl_str_mv |
Luna, Martín Francisco Martínez, Ernesto Carlos |
| author |
Luna, Martín Francisco |
| author_facet |
Luna, Martín Francisco Martínez, Ernesto Carlos |
| author_role |
author |
| author2 |
Martínez, Ernesto Carlos |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
BAYESIAN OPTIMIZATION CYBERNETIC MODEL DESIGN OF DYNAMIC EXPERIMENTS GLOBAL SENSITIVITY ANALYSIS |
| topic |
BAYESIAN OPTIMIZATION CYBERNETIC MODEL DESIGN OF DYNAMIC EXPERIMENTS GLOBAL SENSITIVITY ANALYSIS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Cybernetic models of bioreactors are appealing due to their capacity to account for regulatory mechanisms in cell metabolism by modeling the synthesis of enzymes and their activities. For a given objective of interest, experimental data used to fit the cybernetic model parameters should be maximally informative. To excite purposefully the most relevant metabolic pathways, a dynamic experiment is designed by accounting for the sensitivity of the chosen objective to time-varying operating conditions. In this work, the bioreactor feeding profile and sampling times are designed to maximize the information content. A Bayesian optimization approach is proposed to solve the resulting mathematical program. As a case study, biomass production is used as the objective to be maximized in fed-batch cultivation of Saccharomyces cerevisiae growing on glucose as a carbon source. Experimental results demonstrate that the proposed approach helps to iteratively improve a cybernetic model by designing experiments that maximize the information content. Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
| description |
Cybernetic models of bioreactors are appealing due to their capacity to account for regulatory mechanisms in cell metabolism by modeling the synthesis of enzymes and their activities. For a given objective of interest, experimental data used to fit the cybernetic model parameters should be maximally informative. To excite purposefully the most relevant metabolic pathways, a dynamic experiment is designed by accounting for the sensitivity of the chosen objective to time-varying operating conditions. In this work, the bioreactor feeding profile and sampling times are designed to maximize the information content. A Bayesian optimization approach is proposed to solve the resulting mathematical program. As a case study, biomass production is used as the objective to be maximized in fed-batch cultivation of Saccharomyces cerevisiae growing on glucose as a carbon source. Experimental results demonstrate that the proposed approach helps to iteratively improve a cybernetic model by designing experiments that maximize the information content. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87042 Luna, Martín Francisco; Martínez, Ernesto Carlos; Optimal design of dynamic experiments in the development of cybernetic models for bioreactors; Institution of Chemical Engineers; Chemical Engineering Research & Design; 136; 8-2018; 334-346 0263-8762 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/87042 |
| identifier_str_mv |
Luna, Martín Francisco; Martínez, Ernesto Carlos; Optimal design of dynamic experiments in the development of cybernetic models for bioreactors; Institution of Chemical Engineers; Chemical Engineering Research & Design; 136; 8-2018; 334-346 0263-8762 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0263876218302752?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cherd.2018.05.036 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Institution of Chemical Engineers |
| publisher.none.fl_str_mv |
Institution of Chemical Engineers |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782416027385856 |
| score |
12.982451 |