Guía para el análisis de datos espaciales : aplicaciones en agricultura

Autores
Córdoba, Mariano Augusto; Paccioretti, Pablo Ariel; Giannini Kurina, Franca; Bruno, Cecilia Inés; Balzarini, Mónica Graciela
Año de publicación
2019
Idioma
español castellano
Tipo de recurso
libro
Estado
versión publicada
Descripción
Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Paccioretti, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Paccioretti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Bruno, Cecilia Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Bruno, Cecilia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio. La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura. La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio. Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente. Con varias variables para cada sitio, una de ellas interpretada como resultante de un proceso y otras como explicativas o potenciales predictores, es posible obtener predicciones espaciales a partir de modelos que consideran la correlación espacial de los datos. Los modelos pueden estimarse tanto en un marco teórico frecuentista (Cressie and Wikle 2015; Schabenberger and Gotway 2005) como desde el marco teórico bayesiano (Correa Morales, Causil, and Javier 2018). También, desde la Ciencia de Datos con base computacional, se encuentran disponibles algoritmos de aprendizaje automático que incorporan la espacialidad en el análisis de datos (Li et al. 2011). En esta guía se ilustra el manejo y procesamiento de datos espaciales con distintos métodos estadísticos y su aplicación en agricultura. El texto está organizado en tres partes; la primera contiene bases conceptuales para el análisis de datos georreferenciados provenientes de procesos espaciales continuos. La segunda, la implementación de protocolos de análisis completos sobre datos distribuidos a escala fina en el espacio, con códigos de programa listos para ejecutar en el software estadístico R (R. C. Team 2019) y en el software InfoStat (Di Rienzo et al. 2019). La tercera parte del texto ilustra la implementación del manejo y análisis de datos distribuidos a escala regional con códigos en R. La versión digital de este libro puede obtenerse desde www.agro.unc.edu.ar/~estadisticaaplicada donde también se encuentran los códigos de programación y los datos usados en este texto.
Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Paccioretti, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Paccioretti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Bruno, Cecilia Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Bruno, Cecilia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Materia
Estadística
Métodos estadísticos
Análisis estadístico
Análisis de datos
Agricultura
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/21908

id RDUUNC_87fa14bc3268d4168563b3d052daf3f6
oai_identifier_str oai:rdu.unc.edu.ar:11086/21908
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Guía para el análisis de datos espaciales : aplicaciones en agriculturaCórdoba, Mariano AugustoPaccioretti, Pablo ArielGiannini Kurina, FrancaBruno, Cecilia InésBalzarini, Mónica GracielaEstadísticaMétodos estadísticosAnálisis estadísticoAnálisis de datosAgriculturaFil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.Fil: Paccioretti, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.Fil: Paccioretti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.Fil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.Fil: Bruno, Cecilia Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.Fil: Bruno, Cecilia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio. La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura. La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio. Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente. Con varias variables para cada sitio, una de ellas interpretada como resultante de un proceso y otras como explicativas o potenciales predictores, es posible obtener predicciones espaciales a partir de modelos que consideran la correlación espacial de los datos. Los modelos pueden estimarse tanto en un marco teórico frecuentista (Cressie and Wikle 2015; Schabenberger and Gotway 2005) como desde el marco teórico bayesiano (Correa Morales, Causil, and Javier 2018). También, desde la Ciencia de Datos con base computacional, se encuentran disponibles algoritmos de aprendizaje automático que incorporan la espacialidad en el análisis de datos (Li et al. 2011). En esta guía se ilustra el manejo y procesamiento de datos espaciales con distintos métodos estadísticos y su aplicación en agricultura. El texto está organizado en tres partes; la primera contiene bases conceptuales para el análisis de datos georreferenciados provenientes de procesos espaciales continuos. La segunda, la implementación de protocolos de análisis completos sobre datos distribuidos a escala fina en el espacio, con códigos de programa listos para ejecutar en el software estadístico R (R. C. Team 2019) y en el software InfoStat (Di Rienzo et al. 2019). La tercera parte del texto ilustra la implementación del manejo y análisis de datos distribuidos a escala regional con códigos en R. La versión digital de este libro puede obtenerse desde www.agro.unc.edu.ar/~estadisticaaplicada donde también se encuentran los códigos de programación y los datos usados en este texto.Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.Fil: Paccioretti, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.Fil: Paccioretti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.Fil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.Fil: Bruno, Cecilia Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.Fil: Bruno, Cecilia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.Brujas2019info:eu-repo/semantics/bookinfo:ar-repo/semantics/libroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2f33application/pdf9789877602722http://hdl.handle.net/11086/21908spaSerie Estadística Aplicadainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-04T12:31:42Zoai:rdu.unc.edu.ar:11086/21908Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:31:42.49Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Guía para el análisis de datos espaciales : aplicaciones en agricultura
title Guía para el análisis de datos espaciales : aplicaciones en agricultura
spellingShingle Guía para el análisis de datos espaciales : aplicaciones en agricultura
Córdoba, Mariano Augusto
Estadística
Métodos estadísticos
Análisis estadístico
Análisis de datos
Agricultura
title_short Guía para el análisis de datos espaciales : aplicaciones en agricultura
title_full Guía para el análisis de datos espaciales : aplicaciones en agricultura
title_fullStr Guía para el análisis de datos espaciales : aplicaciones en agricultura
title_full_unstemmed Guía para el análisis de datos espaciales : aplicaciones en agricultura
title_sort Guía para el análisis de datos espaciales : aplicaciones en agricultura
dc.creator.none.fl_str_mv Córdoba, Mariano Augusto
Paccioretti, Pablo Ariel
Giannini Kurina, Franca
Bruno, Cecilia Inés
Balzarini, Mónica Graciela
author Córdoba, Mariano Augusto
author_facet Córdoba, Mariano Augusto
Paccioretti, Pablo Ariel
Giannini Kurina, Franca
Bruno, Cecilia Inés
Balzarini, Mónica Graciela
author_role author
author2 Paccioretti, Pablo Ariel
Giannini Kurina, Franca
Bruno, Cecilia Inés
Balzarini, Mónica Graciela
author2_role author
author
author
author
dc.subject.none.fl_str_mv Estadística
Métodos estadísticos
Análisis estadístico
Análisis de datos
Agricultura
topic Estadística
Métodos estadísticos
Análisis estadístico
Análisis de datos
Agricultura
dc.description.none.fl_txt_mv Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Paccioretti, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Paccioretti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Bruno, Cecilia Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Bruno, Cecilia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
En las últimas décadas se ha impulsado el desarrollo y la utilización de nuevas tecnologías que permiten capturar datos espaciales, i.e. datos de una variable regionalizada o asociados a una localización en el espacio. La infraestructura de datos espaciales es cada vez mayor en tamaño y calidad, especialmente la asociada a la generación de datos que provienen de sensores ya sea remotos o proximales. Los volúmenes de datos espaciales no sólo son vastos y variados, sino que también, en la mayoría de los escenarios, son accesibles. Estos datos generan nuevas oportunidades para la investigación en agricultura. La variabilidad en los procesos aleatorios que generan datos espaciales se modela con diversas herramientas de la Estadística Espacial y se representa gráficamente en mapas de variabilidad espacial donde puede observarse cómo cambian los valores de una o más variables aleatorias según su posición en el espacio. Aún cuando se estudian dominios espaciales continuos con alta densidad de datos, usualmente no existen observaciones de la variable de interés para todos las localizaciones o sitios del espacio analizado; así se hace necesario obtener predicciones espaciales, i.e. predecir el valor de la variable en sitios sin datos. Con grillas de predicción densa, es posible obtener mapas de contorno casi continuos espacialmente. Con varias variables para cada sitio, una de ellas interpretada como resultante de un proceso y otras como explicativas o potenciales predictores, es posible obtener predicciones espaciales a partir de modelos que consideran la correlación espacial de los datos. Los modelos pueden estimarse tanto en un marco teórico frecuentista (Cressie and Wikle 2015; Schabenberger and Gotway 2005) como desde el marco teórico bayesiano (Correa Morales, Causil, and Javier 2018). También, desde la Ciencia de Datos con base computacional, se encuentran disponibles algoritmos de aprendizaje automático que incorporan la espacialidad en el análisis de datos (Li et al. 2011). En esta guía se ilustra el manejo y procesamiento de datos espaciales con distintos métodos estadísticos y su aplicación en agricultura. El texto está organizado en tres partes; la primera contiene bases conceptuales para el análisis de datos georreferenciados provenientes de procesos espaciales continuos. La segunda, la implementación de protocolos de análisis completos sobre datos distribuidos a escala fina en el espacio, con códigos de programa listos para ejecutar en el software estadístico R (R. C. Team 2019) y en el software InfoStat (Di Rienzo et al. 2019). La tercera parte del texto ilustra la implementación del manejo y análisis de datos distribuidos a escala regional con códigos en R. La versión digital de este libro puede obtenerse desde www.agro.unc.edu.ar/~estadisticaaplicada donde también se encuentran los códigos de programación y los datos usados en este texto.
Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Paccioretti, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Paccioretti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Giannini Kurina, Franca. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Bruno, Cecilia Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Bruno, Cecilia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba); Argentina.
description Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/book
info:ar-repo/semantics/libro
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_2f33
format book
status_str publishedVersion
dc.identifier.none.fl_str_mv 9789877602722
http://hdl.handle.net/11086/21908
identifier_str_mv 9789877602722
url http://hdl.handle.net/11086/21908
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Serie Estadística Aplicada
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Brujas
publisher.none.fl_str_mv Brujas
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1842349620495122432
score 13.13397