Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach
- Autores
- Collazo, Soledad Maribel; Barrucand, Mariana Graciela; Rusticucci, Matilde Monica
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Several socio-economic sectors are sensitive to the occurrence of extreme climate events. The ability to predict these extremes will allow precautionary measures to reduce their impacts. This work aims to disseminate a seasonal statistical forecast of daily temperature extremes in Argentina to the international scientific community. At the local level, this forecast is shared at monthly meetings organized by the Argentine National Meteorological Service and attended by different users. For the temperature extremes modeling, several predictors and statistical techniques were applied. We estimated the probability of each tercile category (above-normal, near-normal, and below-normal) by quantifying the percentage of models that predict each of them. The forecasts were verified by calculating different metrics. In general, we observed that the forecast system has less skill to discriminate the near-normal category in all seasons, and the other categories present a skill highly variable according to the season, region, and extreme index. The verification process revealed that predictability increases for all extreme indices with a previous La Niña phase. This product represents an advance towards an operational seasonal forecast of extreme temperatures in Argentina because it offers predictions based on a detailed study of predictors in the region, the incorporation of multiple statistical methodologies, and the predicted variables are not the most typical ones offered by forecasting centers. Finally, it is highlighted that the accuracy rate obtained with this product exceeds a forecast based on climatology, i.e., despite the uncertainties, our forecasts provide additional information to users for decision making.
Fil: Collazo, Soledad Maribel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Barrucand, Mariana Graciela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Rusticucci, Matilde Monica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina - Materia
-
ARGENTINA
EMPIRICAL MODELS
EXTREME TEMPERATURES
PREDICTORS
SEASONAL PREDICTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/223631
Ver los metadatos del registro completo
id |
CONICETDig_2dc90bf12a458fd21a4b964812d4d6ea |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/223631 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approachCollazo, Soledad MaribelBarrucand, Mariana GracielaRusticucci, Matilde MonicaARGENTINAEMPIRICAL MODELSEXTREME TEMPERATURESPREDICTORSSEASONAL PREDICTIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Several socio-economic sectors are sensitive to the occurrence of extreme climate events. The ability to predict these extremes will allow precautionary measures to reduce their impacts. This work aims to disseminate a seasonal statistical forecast of daily temperature extremes in Argentina to the international scientific community. At the local level, this forecast is shared at monthly meetings organized by the Argentine National Meteorological Service and attended by different users. For the temperature extremes modeling, several predictors and statistical techniques were applied. We estimated the probability of each tercile category (above-normal, near-normal, and below-normal) by quantifying the percentage of models that predict each of them. The forecasts were verified by calculating different metrics. In general, we observed that the forecast system has less skill to discriminate the near-normal category in all seasons, and the other categories present a skill highly variable according to the season, region, and extreme index. The verification process revealed that predictability increases for all extreme indices with a previous La Niña phase. This product represents an advance towards an operational seasonal forecast of extreme temperatures in Argentina because it offers predictions based on a detailed study of predictors in the region, the incorporation of multiple statistical methodologies, and the predicted variables are not the most typical ones offered by forecasting centers. Finally, it is highlighted that the accuracy rate obtained with this product exceeds a forecast based on climatology, i.e., despite the uncertainties, our forecasts provide additional information to users for decision making.Fil: Collazo, Soledad Maribel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Barrucand, Mariana Graciela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Rusticucci, Matilde Monica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaElsevier2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/223631Collazo, Soledad Maribel; Barrucand, Mariana Graciela; Rusticucci, Matilde Monica; Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach; Elsevier; Climate Services; 26; 4-2022; 1-182405-8807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2405880722000115info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cliser.2022.100293info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:03Zoai:ri.conicet.gov.ar:11336/223631instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:04.281CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach |
title |
Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach |
spellingShingle |
Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach Collazo, Soledad Maribel ARGENTINA EMPIRICAL MODELS EXTREME TEMPERATURES PREDICTORS SEASONAL PREDICTION |
title_short |
Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach |
title_full |
Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach |
title_fullStr |
Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach |
title_full_unstemmed |
Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach |
title_sort |
Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach |
dc.creator.none.fl_str_mv |
Collazo, Soledad Maribel Barrucand, Mariana Graciela Rusticucci, Matilde Monica |
author |
Collazo, Soledad Maribel |
author_facet |
Collazo, Soledad Maribel Barrucand, Mariana Graciela Rusticucci, Matilde Monica |
author_role |
author |
author2 |
Barrucand, Mariana Graciela Rusticucci, Matilde Monica |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARGENTINA EMPIRICAL MODELS EXTREME TEMPERATURES PREDICTORS SEASONAL PREDICTION |
topic |
ARGENTINA EMPIRICAL MODELS EXTREME TEMPERATURES PREDICTORS SEASONAL PREDICTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Several socio-economic sectors are sensitive to the occurrence of extreme climate events. The ability to predict these extremes will allow precautionary measures to reduce their impacts. This work aims to disseminate a seasonal statistical forecast of daily temperature extremes in Argentina to the international scientific community. At the local level, this forecast is shared at monthly meetings organized by the Argentine National Meteorological Service and attended by different users. For the temperature extremes modeling, several predictors and statistical techniques were applied. We estimated the probability of each tercile category (above-normal, near-normal, and below-normal) by quantifying the percentage of models that predict each of them. The forecasts were verified by calculating different metrics. In general, we observed that the forecast system has less skill to discriminate the near-normal category in all seasons, and the other categories present a skill highly variable according to the season, region, and extreme index. The verification process revealed that predictability increases for all extreme indices with a previous La Niña phase. This product represents an advance towards an operational seasonal forecast of extreme temperatures in Argentina because it offers predictions based on a detailed study of predictors in the region, the incorporation of multiple statistical methodologies, and the predicted variables are not the most typical ones offered by forecasting centers. Finally, it is highlighted that the accuracy rate obtained with this product exceeds a forecast based on climatology, i.e., despite the uncertainties, our forecasts provide additional information to users for decision making. Fil: Collazo, Soledad Maribel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina Fil: Barrucand, Mariana Graciela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina Fil: Rusticucci, Matilde Monica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina |
description |
Several socio-economic sectors are sensitive to the occurrence of extreme climate events. The ability to predict these extremes will allow precautionary measures to reduce their impacts. This work aims to disseminate a seasonal statistical forecast of daily temperature extremes in Argentina to the international scientific community. At the local level, this forecast is shared at monthly meetings organized by the Argentine National Meteorological Service and attended by different users. For the temperature extremes modeling, several predictors and statistical techniques were applied. We estimated the probability of each tercile category (above-normal, near-normal, and below-normal) by quantifying the percentage of models that predict each of them. The forecasts were verified by calculating different metrics. In general, we observed that the forecast system has less skill to discriminate the near-normal category in all seasons, and the other categories present a skill highly variable according to the season, region, and extreme index. The verification process revealed that predictability increases for all extreme indices with a previous La Niña phase. This product represents an advance towards an operational seasonal forecast of extreme temperatures in Argentina because it offers predictions based on a detailed study of predictors in the region, the incorporation of multiple statistical methodologies, and the predicted variables are not the most typical ones offered by forecasting centers. Finally, it is highlighted that the accuracy rate obtained with this product exceeds a forecast based on climatology, i.e., despite the uncertainties, our forecasts provide additional information to users for decision making. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/223631 Collazo, Soledad Maribel; Barrucand, Mariana Graciela; Rusticucci, Matilde Monica; Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach; Elsevier; Climate Services; 26; 4-2022; 1-18 2405-8807 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/223631 |
identifier_str_mv |
Collazo, Soledad Maribel; Barrucand, Mariana Graciela; Rusticucci, Matilde Monica; Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach; Elsevier; Climate Services; 26; 4-2022; 1-18 2405-8807 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2405880722000115 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cliser.2022.100293 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270104980553728 |
score |
13.13397 |