Summer seasonal predictability of warm days in Argentina: statistical model approach
- Autores
- Collazo, Soledad Maribel; Barrucand, Mariana Graciela; Rusticucci, Matilde Monica
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Predicting extreme temperature events can be very useful for different sectorsthat are strongly affected by their variability. The goal of this study is toanalyze the influence of the main atmospheric, oceanic, and soil moistureforcing on the occurrence of summer warm days and to predict extremetemperatures in Argentina northern of 40°S by fitting a statistical model. In apreliminary analysis, we studied trends and periodicities. Significant positivetrends, fundamentally in western Argentina, and two main periodicities ofsummer warm days were detected: 2?4 years and approximately 8 years.Lagged correlations allowed us to identify the key predictors: ElNiño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), andStandardized Precipitation Indices (SPI). We also noticed that the frequency ofwarm days in spring acts as a good predictor of summer warm days. Due to thecollinearity among many predictors, principal component regression was usedto simulate summer warm days. We obtained negative biases (i.e., the modeltends to underestimate the frequency of summer warm days), but the observedand simulated values of summer warm days were significantly correlated,except in northwest Argentina. Finally, we analyzed the predictability of thesummer warm days under ENSO neutral conditions, and we found newpredictors: the geopotential height gradient in 850 hPa (between the AtlanticAnticyclone and the Chaco Low) and the Atlantic Multidecadal Oscillation(AMO), while the PDO and SPI lost some relevance.
Fil: Collazo, Soledad Maribel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Barrucand, Mariana Graciela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Rusticucci, Matilde Monica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina - Materia
-
WARM DAYS
EXTREME TEMPERATURE
CLIMATE PREDICTION
PRINCIPAL COMPONENT REGRESSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/149553
Ver los metadatos del registro completo
id |
CONICETDig_da5929eb7f11770cc2d09920b5e13f8c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/149553 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Summer seasonal predictability of warm days in Argentina: statistical model approachCollazo, Soledad MaribelBarrucand, Mariana GracielaRusticucci, Matilde MonicaWARM DAYSEXTREME TEMPERATURECLIMATE PREDICTIONPRINCIPAL COMPONENT REGRESSIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Predicting extreme temperature events can be very useful for different sectorsthat are strongly affected by their variability. The goal of this study is toanalyze the influence of the main atmospheric, oceanic, and soil moistureforcing on the occurrence of summer warm days and to predict extremetemperatures in Argentina northern of 40°S by fitting a statistical model. In apreliminary analysis, we studied trends and periodicities. Significant positivetrends, fundamentally in western Argentina, and two main periodicities ofsummer warm days were detected: 2?4 years and approximately 8 years.Lagged correlations allowed us to identify the key predictors: ElNiño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), andStandardized Precipitation Indices (SPI). We also noticed that the frequency ofwarm days in spring acts as a good predictor of summer warm days. Due to thecollinearity among many predictors, principal component regression was usedto simulate summer warm days. We obtained negative biases (i.e., the modeltends to underestimate the frequency of summer warm days), but the observedand simulated values of summer warm days were significantly correlated,except in northwest Argentina. Finally, we analyzed the predictability of thesummer warm days under ENSO neutral conditions, and we found newpredictors: the geopotential height gradient in 850 hPa (between the AtlanticAnticyclone and the Chaco Low) and the Atlantic Multidecadal Oscillation(AMO), while the PDO and SPI lost some relevance.Fil: Collazo, Soledad Maribel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Barrucand, Mariana Graciela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Rusticucci, Matilde Monica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaSpringer Wien2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149553Collazo, Soledad Maribel; Barrucand, Mariana Graciela; Rusticucci, Matilde Monica; Summer seasonal predictability of warm days in Argentina: statistical model approach; Springer Wien; Theory & Application Climatology; 138; 3; 7-2019; 1853-18760177-798XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00704-019-02933-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00704-019-02933-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:32Zoai:ri.conicet.gov.ar:11336/149553instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:32.842CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Summer seasonal predictability of warm days in Argentina: statistical model approach |
title |
Summer seasonal predictability of warm days in Argentina: statistical model approach |
spellingShingle |
Summer seasonal predictability of warm days in Argentina: statistical model approach Collazo, Soledad Maribel WARM DAYS EXTREME TEMPERATURE CLIMATE PREDICTION PRINCIPAL COMPONENT REGRESSION |
title_short |
Summer seasonal predictability of warm days in Argentina: statistical model approach |
title_full |
Summer seasonal predictability of warm days in Argentina: statistical model approach |
title_fullStr |
Summer seasonal predictability of warm days in Argentina: statistical model approach |
title_full_unstemmed |
Summer seasonal predictability of warm days in Argentina: statistical model approach |
title_sort |
Summer seasonal predictability of warm days in Argentina: statistical model approach |
dc.creator.none.fl_str_mv |
Collazo, Soledad Maribel Barrucand, Mariana Graciela Rusticucci, Matilde Monica |
author |
Collazo, Soledad Maribel |
author_facet |
Collazo, Soledad Maribel Barrucand, Mariana Graciela Rusticucci, Matilde Monica |
author_role |
author |
author2 |
Barrucand, Mariana Graciela Rusticucci, Matilde Monica |
author2_role |
author author |
dc.subject.none.fl_str_mv |
WARM DAYS EXTREME TEMPERATURE CLIMATE PREDICTION PRINCIPAL COMPONENT REGRESSION |
topic |
WARM DAYS EXTREME TEMPERATURE CLIMATE PREDICTION PRINCIPAL COMPONENT REGRESSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Predicting extreme temperature events can be very useful for different sectorsthat are strongly affected by their variability. The goal of this study is toanalyze the influence of the main atmospheric, oceanic, and soil moistureforcing on the occurrence of summer warm days and to predict extremetemperatures in Argentina northern of 40°S by fitting a statistical model. In apreliminary analysis, we studied trends and periodicities. Significant positivetrends, fundamentally in western Argentina, and two main periodicities ofsummer warm days were detected: 2?4 years and approximately 8 years.Lagged correlations allowed us to identify the key predictors: ElNiño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), andStandardized Precipitation Indices (SPI). We also noticed that the frequency ofwarm days in spring acts as a good predictor of summer warm days. Due to thecollinearity among many predictors, principal component regression was usedto simulate summer warm days. We obtained negative biases (i.e., the modeltends to underestimate the frequency of summer warm days), but the observedand simulated values of summer warm days were significantly correlated,except in northwest Argentina. Finally, we analyzed the predictability of thesummer warm days under ENSO neutral conditions, and we found newpredictors: the geopotential height gradient in 850 hPa (between the AtlanticAnticyclone and the Chaco Low) and the Atlantic Multidecadal Oscillation(AMO), while the PDO and SPI lost some relevance. Fil: Collazo, Soledad Maribel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina Fil: Barrucand, Mariana Graciela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina Fil: Rusticucci, Matilde Monica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina |
description |
Predicting extreme temperature events can be very useful for different sectorsthat are strongly affected by their variability. The goal of this study is toanalyze the influence of the main atmospheric, oceanic, and soil moistureforcing on the occurrence of summer warm days and to predict extremetemperatures in Argentina northern of 40°S by fitting a statistical model. In apreliminary analysis, we studied trends and periodicities. Significant positivetrends, fundamentally in western Argentina, and two main periodicities ofsummer warm days were detected: 2?4 years and approximately 8 years.Lagged correlations allowed us to identify the key predictors: ElNiño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), andStandardized Precipitation Indices (SPI). We also noticed that the frequency ofwarm days in spring acts as a good predictor of summer warm days. Due to thecollinearity among many predictors, principal component regression was usedto simulate summer warm days. We obtained negative biases (i.e., the modeltends to underestimate the frequency of summer warm days), but the observedand simulated values of summer warm days were significantly correlated,except in northwest Argentina. Finally, we analyzed the predictability of thesummer warm days under ENSO neutral conditions, and we found newpredictors: the geopotential height gradient in 850 hPa (between the AtlanticAnticyclone and the Chaco Low) and the Atlantic Multidecadal Oscillation(AMO), while the PDO and SPI lost some relevance. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/149553 Collazo, Soledad Maribel; Barrucand, Mariana Graciela; Rusticucci, Matilde Monica; Summer seasonal predictability of warm days in Argentina: statistical model approach; Springer Wien; Theory & Application Climatology; 138; 3; 7-2019; 1853-1876 0177-798X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/149553 |
identifier_str_mv |
Collazo, Soledad Maribel; Barrucand, Mariana Graciela; Rusticucci, Matilde Monica; Summer seasonal predictability of warm days in Argentina: statistical model approach; Springer Wien; Theory & Application Climatology; 138; 3; 7-2019; 1853-1876 0177-798X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00704-019-02933-6 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00704-019-02933-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Wien |
publisher.none.fl_str_mv |
Springer Wien |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614302088036352 |
score |
13.070432 |