A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions

Autores
Troncoso, P.; Fierro, O.; Curilef, S.; Plastino, Ángel Ricardo
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A family of evolution equations describing a power-law nonlinear diffusion process coupled with a local Verhulst-like growth dynamics, and incorporating a global regulation mechanism, is considered. These equations admit an interpretation in terms of population dynamics, and are related to the so-called conserved Fisher equation. Exact timedependent solutions exhibiting a maximum nonextensive q-entropy shape are obtained.q-entropy shape are obtained.
Fil: Troncoso, P.. Universidad Católica del Norte; Chile
Fil: Fierro, O.. Universidad Católica del Norte; Chile
Fil: Curilef, S.. Universidad Católica del Norte; Chile
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Materia
Nonlinear diffusion
Fisher equation
Population dynamics
Nonextensive entropy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/242100

id CONICETDig_2d90f1663ecceb99d31457b06567d432
oai_identifier_str oai:ri.conicet.gov.ar:11336/242100
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutionsTroncoso, P.Fierro, O.Curilef, S.Plastino, Ángel RicardoNonlinear diffusionFisher equationPopulation dynamicsNonextensive entropyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A family of evolution equations describing a power-law nonlinear diffusion process coupled with a local Verhulst-like growth dynamics, and incorporating a global regulation mechanism, is considered. These equations admit an interpretation in terms of population dynamics, and are related to the so-called conserved Fisher equation. Exact timedependent solutions exhibiting a maximum nonextensive q-entropy shape are obtained.q-entropy shape are obtained.Fil: Troncoso, P.. Universidad Católica del Norte; ChileFil: Fierro, O.. Universidad Católica del Norte; ChileFil: Curilef, S.. Universidad Católica del Norte; ChileFil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaElsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242100Troncoso, P.; Fierro, O.; Curilef, S.; Plastino, Ángel Ricardo; A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 375; 2; 12-2007; 457-4660378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437106010569info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2006.10.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:57Zoai:ri.conicet.gov.ar:11336/242100instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:57.878CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
title A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
spellingShingle A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
Troncoso, P.
Nonlinear diffusion
Fisher equation
Population dynamics
Nonextensive entropy
title_short A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
title_full A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
title_fullStr A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
title_full_unstemmed A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
title_sort A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
dc.creator.none.fl_str_mv Troncoso, P.
Fierro, O.
Curilef, S.
Plastino, Ángel Ricardo
author Troncoso, P.
author_facet Troncoso, P.
Fierro, O.
Curilef, S.
Plastino, Ángel Ricardo
author_role author
author2 Fierro, O.
Curilef, S.
Plastino, Ángel Ricardo
author2_role author
author
author
dc.subject.none.fl_str_mv Nonlinear diffusion
Fisher equation
Population dynamics
Nonextensive entropy
topic Nonlinear diffusion
Fisher equation
Population dynamics
Nonextensive entropy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A family of evolution equations describing a power-law nonlinear diffusion process coupled with a local Verhulst-like growth dynamics, and incorporating a global regulation mechanism, is considered. These equations admit an interpretation in terms of population dynamics, and are related to the so-called conserved Fisher equation. Exact timedependent solutions exhibiting a maximum nonextensive q-entropy shape are obtained.q-entropy shape are obtained.
Fil: Troncoso, P.. Universidad Católica del Norte; Chile
Fil: Fierro, O.. Universidad Católica del Norte; Chile
Fil: Curilef, S.. Universidad Católica del Norte; Chile
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
description A family of evolution equations describing a power-law nonlinear diffusion process coupled with a local Verhulst-like growth dynamics, and incorporating a global regulation mechanism, is considered. These equations admit an interpretation in terms of population dynamics, and are related to the so-called conserved Fisher equation. Exact timedependent solutions exhibiting a maximum nonextensive q-entropy shape are obtained.q-entropy shape are obtained.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/242100
Troncoso, P.; Fierro, O.; Curilef, S.; Plastino, Ángel Ricardo; A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 375; 2; 12-2007; 457-466
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/242100
identifier_str_mv Troncoso, P.; Fierro, O.; Curilef, S.; Plastino, Ángel Ricardo; A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 375; 2; 12-2007; 457-466
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437106010569
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2006.10.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082592250527744
score 13.22299