Nonlinear wave equations related to nonextensive thermostatistics

Autores
Plastino, Ángel Ricardo; Wedemann, Roseli S.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We advance two nonlinear wave equations related to the nonextensive thermostatistical formalism based upon the power-law nonadditive Sq entropies. Our present contribution is in line with recent developments, where nonlinear extensions inspired on the q-thermostatistical formalism have been proposed for the Schroedinger, Klein-Gordon, and Dirac wave equations. These previously introduced equations share the interesting feature of admitting q-plane wave solutions. In contrast with these recent developments, one of the nonlinear wave equations that we propose exhibits real q-Gaussian solutions, and the other one admits exponential plane wave solutions modulated by a q-Gaussian. These q-Gaussians are q-exponentials whose arguments are quadratic functions of the space and time variables. The q-Gaussians are at the heart of nonextensive thermostatistics. The wave equations that we analyze in this work illustrate new possible dynamical scenarios leading to time-dependent q-Gaussians. One of the nonlinear wave equations considered here is a wave equation endowed with a nonlinear potential term, and can be regarded as a nonlinear Klein-Gordon equation. The other equation we study is a nonlinear Schroedinger-like equation.
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; Brasil
Materia
NONEXTENSIVE ENTROPIES
NONEXTENSIVE THERMOSTATISTICS
NONLINEAR WAVE EQUATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72828

id CONICETDig_37fb382e38499ebd93666ab1585ae114
oai_identifier_str oai:ri.conicet.gov.ar:11336/72828
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonlinear wave equations related to nonextensive thermostatisticsPlastino, Ángel RicardoWedemann, Roseli S.NONEXTENSIVE ENTROPIESNONEXTENSIVE THERMOSTATISTICSNONLINEAR WAVE EQUATIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We advance two nonlinear wave equations related to the nonextensive thermostatistical formalism based upon the power-law nonadditive Sq entropies. Our present contribution is in line with recent developments, where nonlinear extensions inspired on the q-thermostatistical formalism have been proposed for the Schroedinger, Klein-Gordon, and Dirac wave equations. These previously introduced equations share the interesting feature of admitting q-plane wave solutions. In contrast with these recent developments, one of the nonlinear wave equations that we propose exhibits real q-Gaussian solutions, and the other one admits exponential plane wave solutions modulated by a q-Gaussian. These q-Gaussians are q-exponentials whose arguments are quadratic functions of the space and time variables. The q-Gaussians are at the heart of nonextensive thermostatistics. The wave equations that we analyze in this work illustrate new possible dynamical scenarios leading to time-dependent q-Gaussians. One of the nonlinear wave equations considered here is a wave equation endowed with a nonlinear potential term, and can be regarded as a nonlinear Klein-Gordon equation. The other equation we study is a nonlinear Schroedinger-like equation.Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; BrasilMolecular Diversity Preservation International2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72828Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear wave equations related to nonextensive thermostatistics; Molecular Diversity Preservation International; Entropy; 19; 2; 2-20171099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/e19020060info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/19/2/60info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:14:10Zoai:ri.conicet.gov.ar:11336/72828instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:14:10.281CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonlinear wave equations related to nonextensive thermostatistics
title Nonlinear wave equations related to nonextensive thermostatistics
spellingShingle Nonlinear wave equations related to nonextensive thermostatistics
Plastino, Ángel Ricardo
NONEXTENSIVE ENTROPIES
NONEXTENSIVE THERMOSTATISTICS
NONLINEAR WAVE EQUATIONS
title_short Nonlinear wave equations related to nonextensive thermostatistics
title_full Nonlinear wave equations related to nonextensive thermostatistics
title_fullStr Nonlinear wave equations related to nonextensive thermostatistics
title_full_unstemmed Nonlinear wave equations related to nonextensive thermostatistics
title_sort Nonlinear wave equations related to nonextensive thermostatistics
dc.creator.none.fl_str_mv Plastino, Ángel Ricardo
Wedemann, Roseli S.
author Plastino, Ángel Ricardo
author_facet Plastino, Ángel Ricardo
Wedemann, Roseli S.
author_role author
author2 Wedemann, Roseli S.
author2_role author
dc.subject.none.fl_str_mv NONEXTENSIVE ENTROPIES
NONEXTENSIVE THERMOSTATISTICS
NONLINEAR WAVE EQUATIONS
topic NONEXTENSIVE ENTROPIES
NONEXTENSIVE THERMOSTATISTICS
NONLINEAR WAVE EQUATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We advance two nonlinear wave equations related to the nonextensive thermostatistical formalism based upon the power-law nonadditive Sq entropies. Our present contribution is in line with recent developments, where nonlinear extensions inspired on the q-thermostatistical formalism have been proposed for the Schroedinger, Klein-Gordon, and Dirac wave equations. These previously introduced equations share the interesting feature of admitting q-plane wave solutions. In contrast with these recent developments, one of the nonlinear wave equations that we propose exhibits real q-Gaussian solutions, and the other one admits exponential plane wave solutions modulated by a q-Gaussian. These q-Gaussians are q-exponentials whose arguments are quadratic functions of the space and time variables. The q-Gaussians are at the heart of nonextensive thermostatistics. The wave equations that we analyze in this work illustrate new possible dynamical scenarios leading to time-dependent q-Gaussians. One of the nonlinear wave equations considered here is a wave equation endowed with a nonlinear potential term, and can be regarded as a nonlinear Klein-Gordon equation. The other equation we study is a nonlinear Schroedinger-like equation.
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; Brasil
description We advance two nonlinear wave equations related to the nonextensive thermostatistical formalism based upon the power-law nonadditive Sq entropies. Our present contribution is in line with recent developments, where nonlinear extensions inspired on the q-thermostatistical formalism have been proposed for the Schroedinger, Klein-Gordon, and Dirac wave equations. These previously introduced equations share the interesting feature of admitting q-plane wave solutions. In contrast with these recent developments, one of the nonlinear wave equations that we propose exhibits real q-Gaussian solutions, and the other one admits exponential plane wave solutions modulated by a q-Gaussian. These q-Gaussians are q-exponentials whose arguments are quadratic functions of the space and time variables. The q-Gaussians are at the heart of nonextensive thermostatistics. The wave equations that we analyze in this work illustrate new possible dynamical scenarios leading to time-dependent q-Gaussians. One of the nonlinear wave equations considered here is a wave equation endowed with a nonlinear potential term, and can be regarded as a nonlinear Klein-Gordon equation. The other equation we study is a nonlinear Schroedinger-like equation.
publishDate 2017
dc.date.none.fl_str_mv 2017-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72828
Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear wave equations related to nonextensive thermostatistics; Molecular Diversity Preservation International; Entropy; 19; 2; 2-2017
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72828
identifier_str_mv Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear wave equations related to nonextensive thermostatistics; Molecular Diversity Preservation International; Entropy; 19; 2; 2-2017
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/e19020060
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/19/2/60
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606477287194624
score 13.001348