Nonlinear wave equations related to nonextensive thermostatistics
- Autores
- Plastino, Ángel Ricardo; Wedemann, Roseli S.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We advance two nonlinear wave equations related to the nonextensive thermostatistical formalism based upon the power-law nonadditive Sq entropies. Our present contribution is in line with recent developments, where nonlinear extensions inspired on the q-thermostatistical formalism have been proposed for the Schroedinger, Klein-Gordon, and Dirac wave equations. These previously introduced equations share the interesting feature of admitting q-plane wave solutions. In contrast with these recent developments, one of the nonlinear wave equations that we propose exhibits real q-Gaussian solutions, and the other one admits exponential plane wave solutions modulated by a q-Gaussian. These q-Gaussians are q-exponentials whose arguments are quadratic functions of the space and time variables. The q-Gaussians are at the heart of nonextensive thermostatistics. The wave equations that we analyze in this work illustrate new possible dynamical scenarios leading to time-dependent q-Gaussians. One of the nonlinear wave equations considered here is a wave equation endowed with a nonlinear potential term, and can be regarded as a nonlinear Klein-Gordon equation. The other equation we study is a nonlinear Schroedinger-like equation.
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; Brasil - Materia
-
NONEXTENSIVE ENTROPIES
NONEXTENSIVE THERMOSTATISTICS
NONLINEAR WAVE EQUATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72828
Ver los metadatos del registro completo
id |
CONICETDig_37fb382e38499ebd93666ab1585ae114 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72828 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonlinear wave equations related to nonextensive thermostatisticsPlastino, Ángel RicardoWedemann, Roseli S.NONEXTENSIVE ENTROPIESNONEXTENSIVE THERMOSTATISTICSNONLINEAR WAVE EQUATIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We advance two nonlinear wave equations related to the nonextensive thermostatistical formalism based upon the power-law nonadditive Sq entropies. Our present contribution is in line with recent developments, where nonlinear extensions inspired on the q-thermostatistical formalism have been proposed for the Schroedinger, Klein-Gordon, and Dirac wave equations. These previously introduced equations share the interesting feature of admitting q-plane wave solutions. In contrast with these recent developments, one of the nonlinear wave equations that we propose exhibits real q-Gaussian solutions, and the other one admits exponential plane wave solutions modulated by a q-Gaussian. These q-Gaussians are q-exponentials whose arguments are quadratic functions of the space and time variables. The q-Gaussians are at the heart of nonextensive thermostatistics. The wave equations that we analyze in this work illustrate new possible dynamical scenarios leading to time-dependent q-Gaussians. One of the nonlinear wave equations considered here is a wave equation endowed with a nonlinear potential term, and can be regarded as a nonlinear Klein-Gordon equation. The other equation we study is a nonlinear Schroedinger-like equation.Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; BrasilMolecular Diversity Preservation International2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72828Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear wave equations related to nonextensive thermostatistics; Molecular Diversity Preservation International; Entropy; 19; 2; 2-20171099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/e19020060info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/19/2/60info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:14:10Zoai:ri.conicet.gov.ar:11336/72828instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:14:10.281CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonlinear wave equations related to nonextensive thermostatistics |
title |
Nonlinear wave equations related to nonextensive thermostatistics |
spellingShingle |
Nonlinear wave equations related to nonextensive thermostatistics Plastino, Ángel Ricardo NONEXTENSIVE ENTROPIES NONEXTENSIVE THERMOSTATISTICS NONLINEAR WAVE EQUATIONS |
title_short |
Nonlinear wave equations related to nonextensive thermostatistics |
title_full |
Nonlinear wave equations related to nonextensive thermostatistics |
title_fullStr |
Nonlinear wave equations related to nonextensive thermostatistics |
title_full_unstemmed |
Nonlinear wave equations related to nonextensive thermostatistics |
title_sort |
Nonlinear wave equations related to nonextensive thermostatistics |
dc.creator.none.fl_str_mv |
Plastino, Ángel Ricardo Wedemann, Roseli S. |
author |
Plastino, Ángel Ricardo |
author_facet |
Plastino, Ángel Ricardo Wedemann, Roseli S. |
author_role |
author |
author2 |
Wedemann, Roseli S. |
author2_role |
author |
dc.subject.none.fl_str_mv |
NONEXTENSIVE ENTROPIES NONEXTENSIVE THERMOSTATISTICS NONLINEAR WAVE EQUATIONS |
topic |
NONEXTENSIVE ENTROPIES NONEXTENSIVE THERMOSTATISTICS NONLINEAR WAVE EQUATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We advance two nonlinear wave equations related to the nonextensive thermostatistical formalism based upon the power-law nonadditive Sq entropies. Our present contribution is in line with recent developments, where nonlinear extensions inspired on the q-thermostatistical formalism have been proposed for the Schroedinger, Klein-Gordon, and Dirac wave equations. These previously introduced equations share the interesting feature of admitting q-plane wave solutions. In contrast with these recent developments, one of the nonlinear wave equations that we propose exhibits real q-Gaussian solutions, and the other one admits exponential plane wave solutions modulated by a q-Gaussian. These q-Gaussians are q-exponentials whose arguments are quadratic functions of the space and time variables. The q-Gaussians are at the heart of nonextensive thermostatistics. The wave equations that we analyze in this work illustrate new possible dynamical scenarios leading to time-dependent q-Gaussians. One of the nonlinear wave equations considered here is a wave equation endowed with a nonlinear potential term, and can be regarded as a nonlinear Klein-Gordon equation. The other equation we study is a nonlinear Schroedinger-like equation. Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina Fil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; Brasil |
description |
We advance two nonlinear wave equations related to the nonextensive thermostatistical formalism based upon the power-law nonadditive Sq entropies. Our present contribution is in line with recent developments, where nonlinear extensions inspired on the q-thermostatistical formalism have been proposed for the Schroedinger, Klein-Gordon, and Dirac wave equations. These previously introduced equations share the interesting feature of admitting q-plane wave solutions. In contrast with these recent developments, one of the nonlinear wave equations that we propose exhibits real q-Gaussian solutions, and the other one admits exponential plane wave solutions modulated by a q-Gaussian. These q-Gaussians are q-exponentials whose arguments are quadratic functions of the space and time variables. The q-Gaussians are at the heart of nonextensive thermostatistics. The wave equations that we analyze in this work illustrate new possible dynamical scenarios leading to time-dependent q-Gaussians. One of the nonlinear wave equations considered here is a wave equation endowed with a nonlinear potential term, and can be regarded as a nonlinear Klein-Gordon equation. The other equation we study is a nonlinear Schroedinger-like equation. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72828 Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear wave equations related to nonextensive thermostatistics; Molecular Diversity Preservation International; Entropy; 19; 2; 2-2017 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72828 |
identifier_str_mv |
Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear wave equations related to nonextensive thermostatistics; Molecular Diversity Preservation International; Entropy; 19; 2; 2-2017 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/e19020060 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/19/2/60 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606477287194624 |
score |
13.001348 |