A family of nonlinear Schrödinger equations admitting q-plane wave solutions
- Autores
- Nobre, F.D.; Plastino, Ángel Ricardo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross– Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field ( x,t) (besides the usual one ( x,t)) must be introduced for consistency. The new field can be identified with ∗( x,t) only when q → 1. For q = 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields ( x,t) and ( x,t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by ( x,t) and ( x,t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.
Fil: Nobre, F.D.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina - Materia
-
Classical Field Theory
Nonadditive Entropies
Nonextensive Thermostatistics
Nonlinear Schr&Amp;Ouml;Dinger Equations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/41195
Ver los metadatos del registro completo
id |
CONICETDig_1667a04e1aa8a5916773bec06c88fb7a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/41195 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A family of nonlinear Schrödinger equations admitting q-plane wave solutionsNobre, F.D.Plastino, Ángel RicardoClassical Field TheoryNonadditive EntropiesNonextensive ThermostatisticsNonlinear Schr&Amp;Ouml;Dinger Equationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross– Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field ( x,t) (besides the usual one ( x,t)) must be introduced for consistency. The new field can be identified with ∗( x,t) only when q → 1. For q = 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields ( x,t) and ( x,t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by ( x,t) and ( x,t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.Fil: Nobre, F.D.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaElsevier Science2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41195Nobre, F.D.; Plastino, Ángel Ricardo; A family of nonlinear Schrödinger equations admitting q-plane wave solutions; Elsevier Science; Physics Letters A; 381; 31; 8-2017; 2457-24620375-9601CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2017.05.054info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960117305315info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:38Zoai:ri.conicet.gov.ar:11336/41195instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:38.79CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A family of nonlinear Schrödinger equations admitting q-plane wave solutions |
title |
A family of nonlinear Schrödinger equations admitting q-plane wave solutions |
spellingShingle |
A family of nonlinear Schrödinger equations admitting q-plane wave solutions Nobre, F.D. Classical Field Theory Nonadditive Entropies Nonextensive Thermostatistics Nonlinear Schr&Amp;Ouml;Dinger Equations |
title_short |
A family of nonlinear Schrödinger equations admitting q-plane wave solutions |
title_full |
A family of nonlinear Schrödinger equations admitting q-plane wave solutions |
title_fullStr |
A family of nonlinear Schrödinger equations admitting q-plane wave solutions |
title_full_unstemmed |
A family of nonlinear Schrödinger equations admitting q-plane wave solutions |
title_sort |
A family of nonlinear Schrödinger equations admitting q-plane wave solutions |
dc.creator.none.fl_str_mv |
Nobre, F.D. Plastino, Ángel Ricardo |
author |
Nobre, F.D. |
author_facet |
Nobre, F.D. Plastino, Ángel Ricardo |
author_role |
author |
author2 |
Plastino, Ángel Ricardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Classical Field Theory Nonadditive Entropies Nonextensive Thermostatistics Nonlinear Schr&Amp;Ouml;Dinger Equations |
topic |
Classical Field Theory Nonadditive Entropies Nonextensive Thermostatistics Nonlinear Schr&Amp;Ouml;Dinger Equations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross– Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field ( x,t) (besides the usual one ( x,t)) must be introduced for consistency. The new field can be identified with ∗( x,t) only when q → 1. For q = 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields ( x,t) and ( x,t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by ( x,t) and ( x,t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics. Fil: Nobre, F.D.. Centro Brasileiro de Pesquisas Físicas; Brasil Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina |
description |
Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross– Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field ( x,t) (besides the usual one ( x,t)) must be introduced for consistency. The new field can be identified with ∗( x,t) only when q → 1. For q = 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields ( x,t) and ( x,t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by ( x,t) and ( x,t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/41195 Nobre, F.D.; Plastino, Ángel Ricardo; A family of nonlinear Schrödinger equations admitting q-plane wave solutions; Elsevier Science; Physics Letters A; 381; 31; 8-2017; 2457-2462 0375-9601 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/41195 |
identifier_str_mv |
Nobre, F.D.; Plastino, Ángel Ricardo; A family of nonlinear Schrödinger equations admitting q-plane wave solutions; Elsevier Science; Physics Letters A; 381; 31; 8-2017; 2457-2462 0375-9601 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2017.05.054 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960117305315 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082584747966464 |
score |
13.22299 |