A family of nonlinear Schrödinger equations admitting q-plane wave solutions

Autores
Nobre, F.D.; Plastino, Ángel Ricardo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross– Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field ( x,t) (besides the usual one ( x,t)) must be introduced for consistency. The new field can be identified with ∗( x,t) only when q → 1. For q = 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields ( x,t) and ( x,t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by ( x,t) and ( x,t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.
Fil: Nobre, F.D.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Materia
Classical Field Theory
Nonadditive Entropies
Nonextensive Thermostatistics
Nonlinear Schr&Amp;Ouml;Dinger Equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41195

id CONICETDig_1667a04e1aa8a5916773bec06c88fb7a
oai_identifier_str oai:ri.conicet.gov.ar:11336/41195
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A family of nonlinear Schrödinger equations admitting q-plane wave solutionsNobre, F.D.Plastino, Ángel RicardoClassical Field TheoryNonadditive EntropiesNonextensive ThermostatisticsNonlinear Schr&Amp;Ouml;Dinger Equationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross– Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field ( x,t) (besides the usual one ( x,t)) must be introduced for consistency. The new field can be identified with ∗( x,t) only when q → 1. For q = 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields ( x,t) and ( x,t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by ( x,t) and ( x,t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.Fil: Nobre, F.D.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaElsevier Science2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41195Nobre, F.D.; Plastino, Ángel Ricardo; A family of nonlinear Schrödinger equations admitting q-plane wave solutions; Elsevier Science; Physics Letters A; 381; 31; 8-2017; 2457-24620375-9601CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2017.05.054info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960117305315info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:38Zoai:ri.conicet.gov.ar:11336/41195instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:38.79CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A family of nonlinear Schrödinger equations admitting q-plane wave solutions
title A family of nonlinear Schrödinger equations admitting q-plane wave solutions
spellingShingle A family of nonlinear Schrödinger equations admitting q-plane wave solutions
Nobre, F.D.
Classical Field Theory
Nonadditive Entropies
Nonextensive Thermostatistics
Nonlinear Schr&Amp;Ouml;Dinger Equations
title_short A family of nonlinear Schrödinger equations admitting q-plane wave solutions
title_full A family of nonlinear Schrödinger equations admitting q-plane wave solutions
title_fullStr A family of nonlinear Schrödinger equations admitting q-plane wave solutions
title_full_unstemmed A family of nonlinear Schrödinger equations admitting q-plane wave solutions
title_sort A family of nonlinear Schrödinger equations admitting q-plane wave solutions
dc.creator.none.fl_str_mv Nobre, F.D.
Plastino, Ángel Ricardo
author Nobre, F.D.
author_facet Nobre, F.D.
Plastino, Ángel Ricardo
author_role author
author2 Plastino, Ángel Ricardo
author2_role author
dc.subject.none.fl_str_mv Classical Field Theory
Nonadditive Entropies
Nonextensive Thermostatistics
Nonlinear Schr&Amp;Ouml;Dinger Equations
topic Classical Field Theory
Nonadditive Entropies
Nonextensive Thermostatistics
Nonlinear Schr&Amp;Ouml;Dinger Equations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross– Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field ( x,t) (besides the usual one ( x,t)) must be introduced for consistency. The new field can be identified with ∗( x,t) only when q → 1. For q = 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields ( x,t) and ( x,t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by ( x,t) and ( x,t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.
Fil: Nobre, F.D.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
description Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross– Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field ( x,t) (besides the usual one ( x,t)) must be introduced for consistency. The new field can be identified with ∗( x,t) only when q → 1. For q = 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields ( x,t) and ( x,t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by ( x,t) and ( x,t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41195
Nobre, F.D.; Plastino, Ángel Ricardo; A family of nonlinear Schrödinger equations admitting q-plane wave solutions; Elsevier Science; Physics Letters A; 381; 31; 8-2017; 2457-2462
0375-9601
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41195
identifier_str_mv Nobre, F.D.; Plastino, Ángel Ricardo; A family of nonlinear Schrödinger equations admitting q-plane wave solutions; Elsevier Science; Physics Letters A; 381; 31; 8-2017; 2457-2462
0375-9601
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2017.05.054
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960117305315
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082584747966464
score 13.22299