Sampling theory, oblique projections and a question by Smale and Zhou
- Autores
- Antezana, Jorge Abel; Corach, Gustavo
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In a recent article, Smale and Zhou define a notion of rich data for sampling problems and reconstruction of signals from a discrete set of samples and study different least-square problems related with the minimization of the error. They obtain different error estimations assuming that the original signal belong to the reconstruction subspace and they propose to find error estimations if this assumption does not hold. In this paper, using projection methods, we find such estimates and we extend from reproducing kernel Hilbert spaces to abstract Hilbert spaces some of their results on function reconstruction from point values.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
ANGLES AND COMPATIBILITY
FRAMES
OBLIQUE PROJECTION
SAMPLING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98217
Ver los metadatos del registro completo
id |
CONICETDig_2d5eaeb9529271d39b85c39166f0e233 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98217 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sampling theory, oblique projections and a question by Smale and ZhouAntezana, Jorge AbelCorach, GustavoANGLES AND COMPATIBILITYFRAMESOBLIQUE PROJECTIONSAMPLINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In a recent article, Smale and Zhou define a notion of rich data for sampling problems and reconstruction of signals from a discrete set of samples and study different least-square problems related with the minimization of the error. They obtain different error estimations assuming that the original signal belong to the reconstruction subspace and they propose to find error estimations if this assumption does not hold. In this paper, using projection methods, we find such estimates and we extend from reproducing kernel Hilbert spaces to abstract Hilbert spaces some of their results on function reconstruction from point values.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAcademic Press Inc Elsevier Science2006-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98217Antezana, Jorge Abel; Corach, Gustavo; Sampling theory, oblique projections and a question by Smale and Zhou; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 21; 2; 9-2006; 245-2531063-5203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.acha.2006.01.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1063520306000030info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:25Zoai:ri.conicet.gov.ar:11336/98217instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:25.705CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sampling theory, oblique projections and a question by Smale and Zhou |
title |
Sampling theory, oblique projections and a question by Smale and Zhou |
spellingShingle |
Sampling theory, oblique projections and a question by Smale and Zhou Antezana, Jorge Abel ANGLES AND COMPATIBILITY FRAMES OBLIQUE PROJECTION SAMPLING |
title_short |
Sampling theory, oblique projections and a question by Smale and Zhou |
title_full |
Sampling theory, oblique projections and a question by Smale and Zhou |
title_fullStr |
Sampling theory, oblique projections and a question by Smale and Zhou |
title_full_unstemmed |
Sampling theory, oblique projections and a question by Smale and Zhou |
title_sort |
Sampling theory, oblique projections and a question by Smale and Zhou |
dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Corach, Gustavo |
author |
Antezana, Jorge Abel |
author_facet |
Antezana, Jorge Abel Corach, Gustavo |
author_role |
author |
author2 |
Corach, Gustavo |
author2_role |
author |
dc.subject.none.fl_str_mv |
ANGLES AND COMPATIBILITY FRAMES OBLIQUE PROJECTION SAMPLING |
topic |
ANGLES AND COMPATIBILITY FRAMES OBLIQUE PROJECTION SAMPLING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In a recent article, Smale and Zhou define a notion of rich data for sampling problems and reconstruction of signals from a discrete set of samples and study different least-square problems related with the minimization of the error. They obtain different error estimations assuming that the original signal belong to the reconstruction subspace and they propose to find error estimations if this assumption does not hold. In this paper, using projection methods, we find such estimates and we extend from reproducing kernel Hilbert spaces to abstract Hilbert spaces some of their results on function reconstruction from point values. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
In a recent article, Smale and Zhou define a notion of rich data for sampling problems and reconstruction of signals from a discrete set of samples and study different least-square problems related with the minimization of the error. They obtain different error estimations assuming that the original signal belong to the reconstruction subspace and they propose to find error estimations if this assumption does not hold. In this paper, using projection methods, we find such estimates and we extend from reproducing kernel Hilbert spaces to abstract Hilbert spaces some of their results on function reconstruction from point values. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98217 Antezana, Jorge Abel; Corach, Gustavo; Sampling theory, oblique projections and a question by Smale and Zhou; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 21; 2; 9-2006; 245-253 1063-5203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98217 |
identifier_str_mv |
Antezana, Jorge Abel; Corach, Gustavo; Sampling theory, oblique projections and a question by Smale and Zhou; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 21; 2; 9-2006; 245-253 1063-5203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.acha.2006.01.001 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1063520306000030 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613367233249280 |
score |
13.070432 |