Weighted projections and Riesz frames
- Autores
- Antezana, Jorge Abel; Corach, Gustavo; Ruiz, Mariano Andrés; Stojanoff, Demetrio
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames.
Facultad de Ciencias Exactas - Materia
-
Matemática
Angles
Compatibility
Frames
Riesz frames
Scaled projection
Weighted projection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83290
Ver los metadatos del registro completo
id |
SEDICI_59e01346a443bc5c23d249a76d9b8fbc |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83290 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Weighted projections and Riesz framesAntezana, Jorge AbelCorach, GustavoRuiz, Mariano AndrésStojanoff, DemetrioMatemáticaAnglesCompatibilityFramesRiesz framesScaled projectionWeighted projectionLet H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames.Facultad de Ciencias Exactas2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf367-389http://sedici.unlp.edu.ar/handle/10915/83290enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2005.01.023info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:46Zoai:sedici.unlp.edu.ar:10915/83290Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:46.964SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Weighted projections and Riesz frames |
title |
Weighted projections and Riesz frames |
spellingShingle |
Weighted projections and Riesz frames Antezana, Jorge Abel Matemática Angles Compatibility Frames Riesz frames Scaled projection Weighted projection |
title_short |
Weighted projections and Riesz frames |
title_full |
Weighted projections and Riesz frames |
title_fullStr |
Weighted projections and Riesz frames |
title_full_unstemmed |
Weighted projections and Riesz frames |
title_sort |
Weighted projections and Riesz frames |
dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Corach, Gustavo Ruiz, Mariano Andrés Stojanoff, Demetrio |
author |
Antezana, Jorge Abel |
author_facet |
Antezana, Jorge Abel Corach, Gustavo Ruiz, Mariano Andrés Stojanoff, Demetrio |
author_role |
author |
author2 |
Corach, Gustavo Ruiz, Mariano Andrés Stojanoff, Demetrio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Matemática Angles Compatibility Frames Riesz frames Scaled projection Weighted projection |
topic |
Matemática Angles Compatibility Frames Riesz frames Scaled projection Weighted projection |
dc.description.none.fl_txt_mv |
Let H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames. Facultad de Ciencias Exactas |
description |
Let H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83290 |
url |
http://sedici.unlp.edu.ar/handle/10915/83290 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0024-3795 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2005.01.023 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 367-389 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616030209441792 |
score |
13.070432 |