Weighted projections and Riesz frames

Autores
Antezana, Jorge Abel; Corach, Gustavo; Ruiz, Mariano Andrés; Stojanoff, Demetrio
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames.
Facultad de Ciencias Exactas
Materia
Matemática
Angles
Compatibility
Frames
Riesz frames
Scaled projection
Weighted projection
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83290

id SEDICI_59e01346a443bc5c23d249a76d9b8fbc
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83290
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Weighted projections and Riesz framesAntezana, Jorge AbelCorach, GustavoRuiz, Mariano AndrésStojanoff, DemetrioMatemáticaAnglesCompatibilityFramesRiesz framesScaled projectionWeighted projectionLet H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames.Facultad de Ciencias Exactas2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf367-389http://sedici.unlp.edu.ar/handle/10915/83290enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2005.01.023info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:46Zoai:sedici.unlp.edu.ar:10915/83290Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:46.964SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Weighted projections and Riesz frames
title Weighted projections and Riesz frames
spellingShingle Weighted projections and Riesz frames
Antezana, Jorge Abel
Matemática
Angles
Compatibility
Frames
Riesz frames
Scaled projection
Weighted projection
title_short Weighted projections and Riesz frames
title_full Weighted projections and Riesz frames
title_fullStr Weighted projections and Riesz frames
title_full_unstemmed Weighted projections and Riesz frames
title_sort Weighted projections and Riesz frames
dc.creator.none.fl_str_mv Antezana, Jorge Abel
Corach, Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
author Antezana, Jorge Abel
author_facet Antezana, Jorge Abel
Corach, Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
author_role author
author2 Corach, Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
author2_role author
author
author
dc.subject.none.fl_str_mv Matemática
Angles
Compatibility
Frames
Riesz frames
Scaled projection
Weighted projection
topic Matemática
Angles
Compatibility
Frames
Riesz frames
Scaled projection
Weighted projection
dc.description.none.fl_txt_mv Let H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames.
Facultad de Ciencias Exactas
description Let H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83290
url http://sedici.unlp.edu.ar/handle/10915/83290
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0024-3795
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2005.01.023
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
367-389
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616030209441792
score 13.070432