Oblique projections and frames

Autores
Antezana, Jorge Abel; Corach, Gustavo; Ruiz, Mariano Andrés; Stojanoff, Demetrio
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We characterize those frames on a Hilbert space H which can be represented as the image of an orthonormal basis by an oblique projection defined on an extension K of H. We show that all frames with infinite excess and frame bounds 1 ≤ A ≤ B are of this type. This gives a generalization of a result of Han and Larson which only holds for normalized tight frames.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Frames
Oblique projections
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83137

id SEDICI_c1f6cc53c37bd828b0c9532f42459169
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83137
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Oblique projections and framesAntezana, Jorge AbelCorach, GustavoRuiz, Mariano AndrésStojanoff, DemetrioCiencias ExactasFramesOblique projectionsWe characterize those frames on a Hilbert space H which can be represented as the image of an orthonormal basis by an oblique projection defined on an extension K of H. We show that all frames with infinite excess and frame bounds 1 ≤ A ≤ B are of this type. This gives a generalization of a result of Han and Larson which only holds for normalized tight frames.Facultad de Ciencias Exactas2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1031-1037http://sedici.unlp.edu.ar/handle/10915/83137enginfo:eu-repo/semantics/altIdentifier/issn/0002-9939info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-05-08143-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:45Zoai:sedici.unlp.edu.ar:10915/83137Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:46.142SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Oblique projections and frames
title Oblique projections and frames
spellingShingle Oblique projections and frames
Antezana, Jorge Abel
Ciencias Exactas
Frames
Oblique projections
title_short Oblique projections and frames
title_full Oblique projections and frames
title_fullStr Oblique projections and frames
title_full_unstemmed Oblique projections and frames
title_sort Oblique projections and frames
dc.creator.none.fl_str_mv Antezana, Jorge Abel
Corach, Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
author Antezana, Jorge Abel
author_facet Antezana, Jorge Abel
Corach, Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
author_role author
author2 Corach, Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Frames
Oblique projections
topic Ciencias Exactas
Frames
Oblique projections
dc.description.none.fl_txt_mv We characterize those frames on a Hilbert space H which can be represented as the image of an orthonormal basis by an oblique projection defined on an extension K of H. We show that all frames with infinite excess and frame bounds 1 ≤ A ≤ B are of this type. This gives a generalization of a result of Han and Larson which only holds for normalized tight frames.
Facultad de Ciencias Exactas
description We characterize those frames on a Hilbert space H which can be represented as the image of an orthonormal basis by an oblique projection defined on an extension K of H. We show that all frames with infinite excess and frame bounds 1 ≤ A ≤ B are of this type. This gives a generalization of a result of Han and Larson which only holds for normalized tight frames.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83137
url http://sedici.unlp.edu.ar/handle/10915/83137
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0002-9939
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-05-08143-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1031-1037
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616029818322944
score 13.070432