Oblique Projections and Abstract Splines
- Autores
- Corach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a closed subspace S of a Hilbert space H and a bounded linear operator A ∈ L (H) which is positive, consider the set of all A-self-adjoint projections onto S: P(A,S) ={Q ∈ L(H) : Q^2 = Q, Q(H)=S, AQ = Q*A} In addition, if H_1 is another Hilbert space, T :H→H_1 is a bounded linear operator such that T*T= A and ξ ∈ H, consider the set of (T ,S) spline interpolants to ξ: sP(T,S,ξ)= {n∈ξ +S:∥Tn∥=min_{σ∈s} ∥T(ξ + σ)∥}. A strong relationship exists between P(A, S) and s p(T, S, ξ). In fact, P(A, S) is not empty if and only if s p(T, S, ξ) is not empty for every ξ ∈ H. In this case, for any ξ ∈ H\S it holds s p(T, S, ξ) = {(1 - Q)ξ:Q ∈ P(A, S)} and for any ξ ∈ H, the unique vector of s p(T, S, ξ) with minimal norm is (1 - P_A,S)ξ, where P_A,S is a distinguished element of P(A, S). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
oblique projection
spline - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110824
Ver los metadatos del registro completo
id |
CONICETDig_e02a1b50c93a8a60af4b1e9b0005bd3d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110824 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Oblique Projections and Abstract SplinesCorach, GustavoMaestripieri, Alejandra LauraStojanoff, Demetriooblique projectionsplinehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a closed subspace S of a Hilbert space H and a bounded linear operator A ∈ L (H) which is positive, consider the set of all A-self-adjoint projections onto S: P(A,S) ={Q ∈ L(H) : Q^2 = Q, Q(H)=S, AQ = Q*A} In addition, if H_1 is another Hilbert space, T :H→H_1 is a bounded linear operator such that T*T= A and ξ ∈ H, consider the set of (T ,S) spline interpolants to ξ: sP(T,S,ξ)= {n∈ξ +S:∥Tn∥=min_{σ∈s} ∥T(ξ + σ)∥}. A strong relationship exists between P(A, S) and s p(T, S, ξ). In fact, P(A, S) is not empty if and only if s p(T, S, ξ) is not empty for every ξ ∈ H. In this case, for any ξ ∈ H\S it holds s p(T, S, ξ) = {(1 - Q)ξ:Q ∈ P(A, S)} and for any ξ ∈ H, the unique vector of s p(T, S, ξ) with minimal norm is (1 - P_A,S)ξ, where P_A,S is a distinguished element of P(A, S). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaAcademic Press Inc Elsevier Science2002-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110824Corach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio; Oblique Projections and Abstract Splines; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 117; 2; 8-2002; 189-2060021-9045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1006/jath.2002.3696info:eu-repo/semantics/altIdentifier/doi/https://www.sciencedirect.com/science/article/pii/S0021904502936968?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:21Zoai:ri.conicet.gov.ar:11336/110824instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:21.943CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Oblique Projections and Abstract Splines |
title |
Oblique Projections and Abstract Splines |
spellingShingle |
Oblique Projections and Abstract Splines Corach, Gustavo oblique projection spline |
title_short |
Oblique Projections and Abstract Splines |
title_full |
Oblique Projections and Abstract Splines |
title_fullStr |
Oblique Projections and Abstract Splines |
title_full_unstemmed |
Oblique Projections and Abstract Splines |
title_sort |
Oblique Projections and Abstract Splines |
dc.creator.none.fl_str_mv |
Corach, Gustavo Maestripieri, Alejandra Laura Stojanoff, Demetrio |
author |
Corach, Gustavo |
author_facet |
Corach, Gustavo Maestripieri, Alejandra Laura Stojanoff, Demetrio |
author_role |
author |
author2 |
Maestripieri, Alejandra Laura Stojanoff, Demetrio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
oblique projection spline |
topic |
oblique projection spline |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a closed subspace S of a Hilbert space H and a bounded linear operator A ∈ L (H) which is positive, consider the set of all A-self-adjoint projections onto S: P(A,S) ={Q ∈ L(H) : Q^2 = Q, Q(H)=S, AQ = Q*A} In addition, if H_1 is another Hilbert space, T :H→H_1 is a bounded linear operator such that T*T= A and ξ ∈ H, consider the set of (T ,S) spline interpolants to ξ: sP(T,S,ξ)= {n∈ξ +S:∥Tn∥=min_{σ∈s} ∥T(ξ + σ)∥}. A strong relationship exists between P(A, S) and s p(T, S, ξ). In fact, P(A, S) is not empty if and only if s p(T, S, ξ) is not empty for every ξ ∈ H. In this case, for any ξ ∈ H\S it holds s p(T, S, ξ) = {(1 - Q)ξ:Q ∈ P(A, S)} and for any ξ ∈ H, the unique vector of s p(T, S, ξ) with minimal norm is (1 - P_A,S)ξ, where P_A,S is a distinguished element of P(A, S). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators. Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina |
description |
Given a closed subspace S of a Hilbert space H and a bounded linear operator A ∈ L (H) which is positive, consider the set of all A-self-adjoint projections onto S: P(A,S) ={Q ∈ L(H) : Q^2 = Q, Q(H)=S, AQ = Q*A} In addition, if H_1 is another Hilbert space, T :H→H_1 is a bounded linear operator such that T*T= A and ξ ∈ H, consider the set of (T ,S) spline interpolants to ξ: sP(T,S,ξ)= {n∈ξ +S:∥Tn∥=min_{σ∈s} ∥T(ξ + σ)∥}. A strong relationship exists between P(A, S) and s p(T, S, ξ). In fact, P(A, S) is not empty if and only if s p(T, S, ξ) is not empty for every ξ ∈ H. In this case, for any ξ ∈ H\S it holds s p(T, S, ξ) = {(1 - Q)ξ:Q ∈ P(A, S)} and for any ξ ∈ H, the unique vector of s p(T, S, ξ) with minimal norm is (1 - P_A,S)ξ, where P_A,S is a distinguished element of P(A, S). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110824 Corach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio; Oblique Projections and Abstract Splines; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 117; 2; 8-2002; 189-206 0021-9045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110824 |
identifier_str_mv |
Corach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio; Oblique Projections and Abstract Splines; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 117; 2; 8-2002; 189-206 0021-9045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1006/jath.2002.3696 info:eu-repo/semantics/altIdentifier/doi/https://www.sciencedirect.com/science/article/pii/S0021904502936968?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269219049177088 |
score |
13.13397 |