Oblique Projections and Abstract Splines

Autores
Corach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a closed subspace S of a Hilbert space H and a bounded linear operator A ∈ L (H) which is positive, consider the set of all A-self-adjoint projections onto S: P(A,S) ={Q ∈ L(H) : Q^2 = Q, Q(H)=S, AQ = Q*A} In addition, if H_1 is another Hilbert space, T :H→H_1 is a bounded linear operator such that T*T= A and ξ ∈ H, consider the set of (T ,S) spline interpolants to ξ: sP(T,S,ξ)= {n∈ξ +S:∥Tn∥=min_{σ∈s} ∥T(ξ + σ)∥}. A strong relationship exists between P(A, S) and s p(T, S, ξ). In fact, P(A, S) is not empty if and only if s p(T, S, ξ) is not empty for every ξ ∈ H. In this case, for any ξ ∈ H\S it holds s p(T, S, ξ) = {(1 - Q)ξ:Q ∈ P(A, S)} and for any ξ ∈ H, the unique vector of s p(T, S, ξ) with minimal norm is (1 - P_A,S)ξ, where P_A,S is a distinguished element of P(A, S). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Materia
oblique projection
spline
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/110824

id CONICETDig_e02a1b50c93a8a60af4b1e9b0005bd3d
oai_identifier_str oai:ri.conicet.gov.ar:11336/110824
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Oblique Projections and Abstract SplinesCorach, GustavoMaestripieri, Alejandra LauraStojanoff, Demetriooblique projectionsplinehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a closed subspace S of a Hilbert space H and a bounded linear operator A ∈ L (H) which is positive, consider the set of all A-self-adjoint projections onto S: P(A,S) ={Q ∈ L(H) : Q^2 = Q, Q(H)=S, AQ = Q*A} In addition, if H_1 is another Hilbert space, T :H→H_1 is a bounded linear operator such that T*T= A and ξ ∈ H, consider the set of (T ,S) spline interpolants to ξ: sP(T,S,ξ)= {n∈ξ +S:∥Tn∥=min_{σ∈s} ∥T(ξ + σ)∥}. A strong relationship exists between P(A, S) and s p(T, S, ξ). In fact, P(A, S) is not empty if and only if s p(T, S, ξ) is not empty for every ξ ∈ H. In this case, for any ξ ∈ H\S it holds s p(T, S, ξ) = {(1 - Q)ξ:Q ∈ P(A, S)} and for any ξ ∈ H, the unique vector of s p(T, S, ξ) with minimal norm is (1 - P_A,S)ξ, where P_A,S is a distinguished element of P(A, S). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaAcademic Press Inc Elsevier Science2002-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110824Corach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio; Oblique Projections and Abstract Splines; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 117; 2; 8-2002; 189-2060021-9045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1006/jath.2002.3696info:eu-repo/semantics/altIdentifier/doi/https://www.sciencedirect.com/science/article/pii/S0021904502936968?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:21Zoai:ri.conicet.gov.ar:11336/110824instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:21.943CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Oblique Projections and Abstract Splines
title Oblique Projections and Abstract Splines
spellingShingle Oblique Projections and Abstract Splines
Corach, Gustavo
oblique projection
spline
title_short Oblique Projections and Abstract Splines
title_full Oblique Projections and Abstract Splines
title_fullStr Oblique Projections and Abstract Splines
title_full_unstemmed Oblique Projections and Abstract Splines
title_sort Oblique Projections and Abstract Splines
dc.creator.none.fl_str_mv Corach, Gustavo
Maestripieri, Alejandra Laura
Stojanoff, Demetrio
author Corach, Gustavo
author_facet Corach, Gustavo
Maestripieri, Alejandra Laura
Stojanoff, Demetrio
author_role author
author2 Maestripieri, Alejandra Laura
Stojanoff, Demetrio
author2_role author
author
dc.subject.none.fl_str_mv oblique projection
spline
topic oblique projection
spline
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a closed subspace S of a Hilbert space H and a bounded linear operator A ∈ L (H) which is positive, consider the set of all A-self-adjoint projections onto S: P(A,S) ={Q ∈ L(H) : Q^2 = Q, Q(H)=S, AQ = Q*A} In addition, if H_1 is another Hilbert space, T :H→H_1 is a bounded linear operator such that T*T= A and ξ ∈ H, consider the set of (T ,S) spline interpolants to ξ: sP(T,S,ξ)= {n∈ξ +S:∥Tn∥=min_{σ∈s} ∥T(ξ + σ)∥}. A strong relationship exists between P(A, S) and s p(T, S, ξ). In fact, P(A, S) is not empty if and only if s p(T, S, ξ) is not empty for every ξ ∈ H. In this case, for any ξ ∈ H\S it holds s p(T, S, ξ) = {(1 - Q)ξ:Q ∈ P(A, S)} and for any ξ ∈ H, the unique vector of s p(T, S, ξ) with minimal norm is (1 - P_A,S)ξ, where P_A,S is a distinguished element of P(A, S). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
description Given a closed subspace S of a Hilbert space H and a bounded linear operator A ∈ L (H) which is positive, consider the set of all A-self-adjoint projections onto S: P(A,S) ={Q ∈ L(H) : Q^2 = Q, Q(H)=S, AQ = Q*A} In addition, if H_1 is another Hilbert space, T :H→H_1 is a bounded linear operator such that T*T= A and ξ ∈ H, consider the set of (T ,S) spline interpolants to ξ: sP(T,S,ξ)= {n∈ξ +S:∥Tn∥=min_{σ∈s} ∥T(ξ + σ)∥}. A strong relationship exists between P(A, S) and s p(T, S, ξ). In fact, P(A, S) is not empty if and only if s p(T, S, ξ) is not empty for every ξ ∈ H. In this case, for any ξ ∈ H\S it holds s p(T, S, ξ) = {(1 - Q)ξ:Q ∈ P(A, S)} and for any ξ ∈ H, the unique vector of s p(T, S, ξ) with minimal norm is (1 - P_A,S)ξ, where P_A,S is a distinguished element of P(A, S). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators.
publishDate 2002
dc.date.none.fl_str_mv 2002-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/110824
Corach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio; Oblique Projections and Abstract Splines; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 117; 2; 8-2002; 189-206
0021-9045
CONICET Digital
CONICET
url http://hdl.handle.net/11336/110824
identifier_str_mv Corach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio; Oblique Projections and Abstract Splines; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 117; 2; 8-2002; 189-206
0021-9045
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1006/jath.2002.3696
info:eu-repo/semantics/altIdentifier/doi/https://www.sciencedirect.com/science/article/pii/S0021904502936968?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269219049177088
score 13.13397