Scaling Limits and Generic Bounds for Exploration Processes

Autores
Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Sanders, Jaron
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds.
Fil: Bermolen, Paola. Universidad de la Republica. Facultad de Ingeniería; Uruguay
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sanders, Jaron. Eindhoven Technical University; Países Bajos
Materia
RANDOM GRAPHS
RANDOM SEQUENTIAL ADSORPTION
SCALING LIMITS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55573

id CONICETDig_d4e23e8c232e4e7e15cf58d85163bfcb
oai_identifier_str oai:ri.conicet.gov.ar:11336/55573
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Scaling Limits and Generic Bounds for Exploration ProcessesBermolen, PaolaJonckheere, Matthieu Thimothy SamsonSanders, JaronRANDOM GRAPHSRANDOM SEQUENTIAL ADSORPTIONSCALING LIMITShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds.Fil: Bermolen, Paola. Universidad de la Republica. Facultad de Ingeniería; UruguayFil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sanders, Jaron. Eindhoven Technical University; Países BajosSpringer2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55573Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Sanders, Jaron; Scaling Limits and Generic Bounds for Exploration Processes; Springer; Journal of Statistical Physics; 169; 5; 12-2017; 989-10180022-4715CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-017-1902-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-017-1902-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:16Zoai:ri.conicet.gov.ar:11336/55573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:16.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Scaling Limits and Generic Bounds for Exploration Processes
title Scaling Limits and Generic Bounds for Exploration Processes
spellingShingle Scaling Limits and Generic Bounds for Exploration Processes
Bermolen, Paola
RANDOM GRAPHS
RANDOM SEQUENTIAL ADSORPTION
SCALING LIMITS
title_short Scaling Limits and Generic Bounds for Exploration Processes
title_full Scaling Limits and Generic Bounds for Exploration Processes
title_fullStr Scaling Limits and Generic Bounds for Exploration Processes
title_full_unstemmed Scaling Limits and Generic Bounds for Exploration Processes
title_sort Scaling Limits and Generic Bounds for Exploration Processes
dc.creator.none.fl_str_mv Bermolen, Paola
Jonckheere, Matthieu Thimothy Samson
Sanders, Jaron
author Bermolen, Paola
author_facet Bermolen, Paola
Jonckheere, Matthieu Thimothy Samson
Sanders, Jaron
author_role author
author2 Jonckheere, Matthieu Thimothy Samson
Sanders, Jaron
author2_role author
author
dc.subject.none.fl_str_mv RANDOM GRAPHS
RANDOM SEQUENTIAL ADSORPTION
SCALING LIMITS
topic RANDOM GRAPHS
RANDOM SEQUENTIAL ADSORPTION
SCALING LIMITS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds.
Fil: Bermolen, Paola. Universidad de la Republica. Facultad de Ingeniería; Uruguay
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sanders, Jaron. Eindhoven Technical University; Países Bajos
description We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55573
Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Sanders, Jaron; Scaling Limits and Generic Bounds for Exploration Processes; Springer; Journal of Statistical Physics; 169; 5; 12-2017; 989-1018
0022-4715
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55573
identifier_str_mv Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Sanders, Jaron; Scaling Limits and Generic Bounds for Exploration Processes; Springer; Journal of Statistical Physics; 169; 5; 12-2017; 989-1018
0022-4715
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-017-1902-z
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-017-1902-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980321714241536
score 12.993085