Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study

Autores
Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Many researchers have analyzed seismic attenuation and velocity dispersion due to wave-induced fluid flow (WIFF) related to the presence of fluid-saturated fractures embedded in an isotropic porous background. Most fractured formations do, however, exhibit some degree of intrinsic elastic and hydraulic anisotropy of the background, and the impact of which on the effective seismic properties remains largely unexplored. In this work, we extend a numerical upscaling procedure to account for the potential intrinsic elastic and hydraulic anisotropy of the background. To do this, we represent the background of a representative sample of the fractured formation of interest with an anisotropic poroelastic medium and apply a set of relaxation experiments to compute the effective anisotropic seismic properties. A comprehensive numerical analysis allows us to observe that, for samples containing hydraulically connected fractures, the anisotropic behavior of both P and S waves differs significantly from that observed for an isotropic background. The anisotropy of the stiffness of the background plays a fundamental role for WIFF between the fractures and the background as well as for WIFF between connected fractures. Conversely, the anisotropy of the background permeability affects the characteristic frequency, the angle dependence, and the magnitude of the effects related to WIFF between fractures and background. In addition, different correlations between hydraulic and elastic background anisotropy lead to different degrees of effective seismic anisotropy. Our results therefore indicate that accounting for the effects of intrinsic background anisotropy on WIFF is crucial for a quantitative interpretation of seismic anisotropy measurements in fluid-saturated fractured formations.
Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Caspari, Eva. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
Materia
Intrinsic Anisotropy
Modeling
Numerical Analysis
Poroelasticity
Seismic Anisotropy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/70642

id CONICETDig_2735030f1a650ec5eaa6a8691096525a
oai_identifier_str oai:ri.conicet.gov.ar:11336/70642
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical StudyBarbosa, Nicolás D.Rubino, Jorge GermanCaspari, EvaHolliger, KlausIntrinsic AnisotropyModelingNumerical AnalysisPoroelasticitySeismic Anisotropyhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Many researchers have analyzed seismic attenuation and velocity dispersion due to wave-induced fluid flow (WIFF) related to the presence of fluid-saturated fractures embedded in an isotropic porous background. Most fractured formations do, however, exhibit some degree of intrinsic elastic and hydraulic anisotropy of the background, and the impact of which on the effective seismic properties remains largely unexplored. In this work, we extend a numerical upscaling procedure to account for the potential intrinsic elastic and hydraulic anisotropy of the background. To do this, we represent the background of a representative sample of the fractured formation of interest with an anisotropic poroelastic medium and apply a set of relaxation experiments to compute the effective anisotropic seismic properties. A comprehensive numerical analysis allows us to observe that, for samples containing hydraulically connected fractures, the anisotropic behavior of both P and S waves differs significantly from that observed for an isotropic background. The anisotropy of the stiffness of the background plays a fundamental role for WIFF between the fractures and the background as well as for WIFF between connected fractures. Conversely, the anisotropy of the background permeability affects the characteristic frequency, the angle dependence, and the magnitude of the effects related to WIFF between fractures and background. In addition, different correlations between hydraulic and elastic background anisotropy lead to different degrees of effective seismic anisotropy. Our results therefore indicate that accounting for the effects of intrinsic background anisotropy on WIFF is crucial for a quantitative interpretation of seismic anisotropy measurements in fluid-saturated fractured formations.Fil: Barbosa, Nicolás D.. Universite de Lausanne; SuizaFil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Caspari, Eva. Universite de Lausanne; SuizaFil: Holliger, Klaus. Universite de Lausanne; SuizaBlackwell Publishing2017-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70642Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus; Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 122; 10; 9-10-2017; 8181-81992169-93132169-9356CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/2017JB014558info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JB014558info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:16Zoai:ri.conicet.gov.ar:11336/70642instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:16.475CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study
title Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study
spellingShingle Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study
Barbosa, Nicolás D.
Intrinsic Anisotropy
Modeling
Numerical Analysis
Poroelasticity
Seismic Anisotropy
title_short Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study
title_full Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study
title_fullStr Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study
title_full_unstemmed Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study
title_sort Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study
dc.creator.none.fl_str_mv Barbosa, Nicolás D.
Rubino, Jorge German
Caspari, Eva
Holliger, Klaus
author Barbosa, Nicolás D.
author_facet Barbosa, Nicolás D.
Rubino, Jorge German
Caspari, Eva
Holliger, Klaus
author_role author
author2 Rubino, Jorge German
Caspari, Eva
Holliger, Klaus
author2_role author
author
author
dc.subject.none.fl_str_mv Intrinsic Anisotropy
Modeling
Numerical Analysis
Poroelasticity
Seismic Anisotropy
topic Intrinsic Anisotropy
Modeling
Numerical Analysis
Poroelasticity
Seismic Anisotropy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Many researchers have analyzed seismic attenuation and velocity dispersion due to wave-induced fluid flow (WIFF) related to the presence of fluid-saturated fractures embedded in an isotropic porous background. Most fractured formations do, however, exhibit some degree of intrinsic elastic and hydraulic anisotropy of the background, and the impact of which on the effective seismic properties remains largely unexplored. In this work, we extend a numerical upscaling procedure to account for the potential intrinsic elastic and hydraulic anisotropy of the background. To do this, we represent the background of a representative sample of the fractured formation of interest with an anisotropic poroelastic medium and apply a set of relaxation experiments to compute the effective anisotropic seismic properties. A comprehensive numerical analysis allows us to observe that, for samples containing hydraulically connected fractures, the anisotropic behavior of both P and S waves differs significantly from that observed for an isotropic background. The anisotropy of the stiffness of the background plays a fundamental role for WIFF between the fractures and the background as well as for WIFF between connected fractures. Conversely, the anisotropy of the background permeability affects the characteristic frequency, the angle dependence, and the magnitude of the effects related to WIFF between fractures and background. In addition, different correlations between hydraulic and elastic background anisotropy lead to different degrees of effective seismic anisotropy. Our results therefore indicate that accounting for the effects of intrinsic background anisotropy on WIFF is crucial for a quantitative interpretation of seismic anisotropy measurements in fluid-saturated fractured formations.
Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Caspari, Eva. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
description Many researchers have analyzed seismic attenuation and velocity dispersion due to wave-induced fluid flow (WIFF) related to the presence of fluid-saturated fractures embedded in an isotropic porous background. Most fractured formations do, however, exhibit some degree of intrinsic elastic and hydraulic anisotropy of the background, and the impact of which on the effective seismic properties remains largely unexplored. In this work, we extend a numerical upscaling procedure to account for the potential intrinsic elastic and hydraulic anisotropy of the background. To do this, we represent the background of a representative sample of the fractured formation of interest with an anisotropic poroelastic medium and apply a set of relaxation experiments to compute the effective anisotropic seismic properties. A comprehensive numerical analysis allows us to observe that, for samples containing hydraulically connected fractures, the anisotropic behavior of both P and S waves differs significantly from that observed for an isotropic background. The anisotropy of the stiffness of the background plays a fundamental role for WIFF between the fractures and the background as well as for WIFF between connected fractures. Conversely, the anisotropy of the background permeability affects the characteristic frequency, the angle dependence, and the magnitude of the effects related to WIFF between fractures and background. In addition, different correlations between hydraulic and elastic background anisotropy lead to different degrees of effective seismic anisotropy. Our results therefore indicate that accounting for the effects of intrinsic background anisotropy on WIFF is crucial for a quantitative interpretation of seismic anisotropy measurements in fluid-saturated fractured formations.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/70642
Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus; Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 122; 10; 9-10-2017; 8181-8199
2169-9313
2169-9356
CONICET Digital
CONICET
url http://hdl.handle.net/11336/70642
identifier_str_mv Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus; Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 122; 10; 9-10-2017; 8181-8199
2169-9313
2169-9356
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/2017JB014558
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JB014558
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Blackwell Publishing
publisher.none.fl_str_mv Blackwell Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082640137945088
score 13.22299