Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study
- Autores
- Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many researchers have analyzed seismic attenuation and velocity dispersion due to wave-induced fluid flow (WIFF) related to the presence of fluid-saturated fractures embedded in an isotropic porous background. Most fractured formations do, however, exhibit some degree of intrinsic elastic and hydraulic anisotropy of the background, and the impact of which on the effective seismic properties remains largely unexplored. In this work, we extend a numerical upscaling procedure to account for the potential intrinsic elastic and hydraulic anisotropy of the background. To do this, we represent the background of a representative sample of the fractured formation of interest with an anisotropic poroelastic medium and apply a set of relaxation experiments to compute the effective anisotropic seismic properties. A comprehensive numerical analysis allows us to observe that, for samples containing hydraulically connected fractures, the anisotropic behavior of both P and S waves differs significantly from that observed for an isotropic background. The anisotropy of the stiffness of the background plays a fundamental role for WIFF between the fractures and the background as well as for WIFF between connected fractures. Conversely, the anisotropy of the background permeability affects the characteristic frequency, the angle dependence, and the magnitude of the effects related to WIFF between fractures and background. In addition, different correlations between hydraulic and elastic background anisotropy lead to different degrees of effective seismic anisotropy. Our results therefore indicate that accounting for the effects of intrinsic background anisotropy on WIFF is crucial for a quantitative interpretation of seismic anisotropy measurements in fluid-saturated fractured formations.
Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Caspari, Eva. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza - Materia
-
Intrinsic Anisotropy
Modeling
Numerical Analysis
Poroelasticity
Seismic Anisotropy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70642
Ver los metadatos del registro completo
id |
CONICETDig_2735030f1a650ec5eaa6a8691096525a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70642 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical StudyBarbosa, Nicolás D.Rubino, Jorge GermanCaspari, EvaHolliger, KlausIntrinsic AnisotropyModelingNumerical AnalysisPoroelasticitySeismic Anisotropyhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Many researchers have analyzed seismic attenuation and velocity dispersion due to wave-induced fluid flow (WIFF) related to the presence of fluid-saturated fractures embedded in an isotropic porous background. Most fractured formations do, however, exhibit some degree of intrinsic elastic and hydraulic anisotropy of the background, and the impact of which on the effective seismic properties remains largely unexplored. In this work, we extend a numerical upscaling procedure to account for the potential intrinsic elastic and hydraulic anisotropy of the background. To do this, we represent the background of a representative sample of the fractured formation of interest with an anisotropic poroelastic medium and apply a set of relaxation experiments to compute the effective anisotropic seismic properties. A comprehensive numerical analysis allows us to observe that, for samples containing hydraulically connected fractures, the anisotropic behavior of both P and S waves differs significantly from that observed for an isotropic background. The anisotropy of the stiffness of the background plays a fundamental role for WIFF between the fractures and the background as well as for WIFF between connected fractures. Conversely, the anisotropy of the background permeability affects the characteristic frequency, the angle dependence, and the magnitude of the effects related to WIFF between fractures and background. In addition, different correlations between hydraulic and elastic background anisotropy lead to different degrees of effective seismic anisotropy. Our results therefore indicate that accounting for the effects of intrinsic background anisotropy on WIFF is crucial for a quantitative interpretation of seismic anisotropy measurements in fluid-saturated fractured formations.Fil: Barbosa, Nicolás D.. Universite de Lausanne; SuizaFil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Caspari, Eva. Universite de Lausanne; SuizaFil: Holliger, Klaus. Universite de Lausanne; SuizaBlackwell Publishing2017-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70642Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus; Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 122; 10; 9-10-2017; 8181-81992169-93132169-9356CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/2017JB014558info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JB014558info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:16Zoai:ri.conicet.gov.ar:11336/70642instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:16.475CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study |
title |
Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study |
spellingShingle |
Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study Barbosa, Nicolás D. Intrinsic Anisotropy Modeling Numerical Analysis Poroelasticity Seismic Anisotropy |
title_short |
Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study |
title_full |
Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study |
title_fullStr |
Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study |
title_full_unstemmed |
Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study |
title_sort |
Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study |
dc.creator.none.fl_str_mv |
Barbosa, Nicolás D. Rubino, Jorge German Caspari, Eva Holliger, Klaus |
author |
Barbosa, Nicolás D. |
author_facet |
Barbosa, Nicolás D. Rubino, Jorge German Caspari, Eva Holliger, Klaus |
author_role |
author |
author2 |
Rubino, Jorge German Caspari, Eva Holliger, Klaus |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Intrinsic Anisotropy Modeling Numerical Analysis Poroelasticity Seismic Anisotropy |
topic |
Intrinsic Anisotropy Modeling Numerical Analysis Poroelasticity Seismic Anisotropy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many researchers have analyzed seismic attenuation and velocity dispersion due to wave-induced fluid flow (WIFF) related to the presence of fluid-saturated fractures embedded in an isotropic porous background. Most fractured formations do, however, exhibit some degree of intrinsic elastic and hydraulic anisotropy of the background, and the impact of which on the effective seismic properties remains largely unexplored. In this work, we extend a numerical upscaling procedure to account for the potential intrinsic elastic and hydraulic anisotropy of the background. To do this, we represent the background of a representative sample of the fractured formation of interest with an anisotropic poroelastic medium and apply a set of relaxation experiments to compute the effective anisotropic seismic properties. A comprehensive numerical analysis allows us to observe that, for samples containing hydraulically connected fractures, the anisotropic behavior of both P and S waves differs significantly from that observed for an isotropic background. The anisotropy of the stiffness of the background plays a fundamental role for WIFF between the fractures and the background as well as for WIFF between connected fractures. Conversely, the anisotropy of the background permeability affects the characteristic frequency, the angle dependence, and the magnitude of the effects related to WIFF between fractures and background. In addition, different correlations between hydraulic and elastic background anisotropy lead to different degrees of effective seismic anisotropy. Our results therefore indicate that accounting for the effects of intrinsic background anisotropy on WIFF is crucial for a quantitative interpretation of seismic anisotropy measurements in fluid-saturated fractured formations. Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Caspari, Eva. Universite de Lausanne; Suiza Fil: Holliger, Klaus. Universite de Lausanne; Suiza |
description |
Many researchers have analyzed seismic attenuation and velocity dispersion due to wave-induced fluid flow (WIFF) related to the presence of fluid-saturated fractures embedded in an isotropic porous background. Most fractured formations do, however, exhibit some degree of intrinsic elastic and hydraulic anisotropy of the background, and the impact of which on the effective seismic properties remains largely unexplored. In this work, we extend a numerical upscaling procedure to account for the potential intrinsic elastic and hydraulic anisotropy of the background. To do this, we represent the background of a representative sample of the fractured formation of interest with an anisotropic poroelastic medium and apply a set of relaxation experiments to compute the effective anisotropic seismic properties. A comprehensive numerical analysis allows us to observe that, for samples containing hydraulically connected fractures, the anisotropic behavior of both P and S waves differs significantly from that observed for an isotropic background. The anisotropy of the stiffness of the background plays a fundamental role for WIFF between the fractures and the background as well as for WIFF between connected fractures. Conversely, the anisotropy of the background permeability affects the characteristic frequency, the angle dependence, and the magnitude of the effects related to WIFF between fractures and background. In addition, different correlations between hydraulic and elastic background anisotropy lead to different degrees of effective seismic anisotropy. Our results therefore indicate that accounting for the effects of intrinsic background anisotropy on WIFF is crucial for a quantitative interpretation of seismic anisotropy measurements in fluid-saturated fractured formations. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70642 Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus; Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 122; 10; 9-10-2017; 8181-8199 2169-9313 2169-9356 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70642 |
identifier_str_mv |
Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus; Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 122; 10; 9-10-2017; 8181-8199 2169-9313 2169-9356 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/2017JB014558 info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JB014558 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Blackwell Publishing |
publisher.none.fl_str_mv |
Blackwell Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082640137945088 |
score |
13.22299 |