Seismic velocity and Q anisotropy in fractured poroelastic media

Autores
Santos, Juan Enrique; Martinez Corredor, Robiel; Carcione, Jose M.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A fluid-saturated poroelastic isotropic medium with aligned fractures behaves as a transversely isotropic and viscoelastic (TIV) medium when the predominant wavelength is much larger than the average distance between fractures. A planar fracture embedded in a fluid saturated poroelastic background medium can be modeled as a extremely thin and compliant porous layer. P-waves traveling in this type of medium induce fluid-pressure gradients at fractures and mesoscopic-scale heterogeneities, generating fluid flow and slow (diffusion) Biot waves, causing attenuation and dispersion of the fast modes (mesoscopic loss). A poroelastic medium with embedded aligned fractures exhibits significant attenuation and dispersion effects due to this mechanism, which can properly be represented at the macroscale with an equivalent TIV medium. In this work, we apply a set of compressibility and shear harmonic finite-element (FE) experiments on fractured highly heterogeneous poroelastic samples to determine the five complex and frequency dependent stiffnesses characterizing the equivalent medium. The experiments consider brine or patchy brine-CO2 saturated samples and a brine saturated sample with a heterogeneous (fractal) skeleton with fractures. We show that fractures induce strong seismic velocity and Q anisotropy, both for qP and qSV waves, enhanced either by patchy saturation or frame heterogeneity.
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina
Fil: Martinez Corredor, Robiel. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Materia
ANISOTROPY
ATTENUATION
FINITE ELEMENTS
FRACTURES
POROELASTICITY
VELOCITY DISPERSION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89347

id CONICETDig_610ac1ea5840b4bc7d5d12363f3005df
oai_identifier_str oai:ri.conicet.gov.ar:11336/89347
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Seismic velocity and Q anisotropy in fractured poroelastic mediaSantos, Juan EnriqueMartinez Corredor, RobielCarcione, Jose M.ANISOTROPYATTENUATIONFINITE ELEMENTSFRACTURESPOROELASTICITYVELOCITY DISPERSIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1A fluid-saturated poroelastic isotropic medium with aligned fractures behaves as a transversely isotropic and viscoelastic (TIV) medium when the predominant wavelength is much larger than the average distance between fractures. A planar fracture embedded in a fluid saturated poroelastic background medium can be modeled as a extremely thin and compliant porous layer. P-waves traveling in this type of medium induce fluid-pressure gradients at fractures and mesoscopic-scale heterogeneities, generating fluid flow and slow (diffusion) Biot waves, causing attenuation and dispersion of the fast modes (mesoscopic loss). A poroelastic medium with embedded aligned fractures exhibits significant attenuation and dispersion effects due to this mechanism, which can properly be represented at the macroscale with an equivalent TIV medium. In this work, we apply a set of compressibility and shear harmonic finite-element (FE) experiments on fractured highly heterogeneous poroelastic samples to determine the five complex and frequency dependent stiffnesses characterizing the equivalent medium. The experiments consider brine or patchy brine-CO2 saturated samples and a brine saturated sample with a heterogeneous (fractal) skeleton with fractures. We show that fractures induce strong seismic velocity and Q anisotropy, both for qP and qSV waves, enhanced either by patchy saturation or frame heterogeneity.Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Purdue University; Estados Unidos. Universidad Nacional de La Plata; ArgentinaFil: Martinez Corredor, Robiel. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaPergamon-Elsevier Science Ltd2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89347Santos, Juan Enrique; Martinez Corredor, Robiel; Carcione, Jose M.; Seismic velocity and Q anisotropy in fractured poroelastic media; Pergamon-Elsevier Science Ltd; International Journal Of Rock Mechanics And Mining Sciences; 70; 4-2014; 212-2181365-1609CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijrmms.2014.05.004info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1365160914001269info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:38Zoai:ri.conicet.gov.ar:11336/89347instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:38.84CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Seismic velocity and Q anisotropy in fractured poroelastic media
title Seismic velocity and Q anisotropy in fractured poroelastic media
spellingShingle Seismic velocity and Q anisotropy in fractured poroelastic media
Santos, Juan Enrique
ANISOTROPY
ATTENUATION
FINITE ELEMENTS
FRACTURES
POROELASTICITY
VELOCITY DISPERSION
title_short Seismic velocity and Q anisotropy in fractured poroelastic media
title_full Seismic velocity and Q anisotropy in fractured poroelastic media
title_fullStr Seismic velocity and Q anisotropy in fractured poroelastic media
title_full_unstemmed Seismic velocity and Q anisotropy in fractured poroelastic media
title_sort Seismic velocity and Q anisotropy in fractured poroelastic media
dc.creator.none.fl_str_mv Santos, Juan Enrique
Martinez Corredor, Robiel
Carcione, Jose M.
author Santos, Juan Enrique
author_facet Santos, Juan Enrique
Martinez Corredor, Robiel
Carcione, Jose M.
author_role author
author2 Martinez Corredor, Robiel
Carcione, Jose M.
author2_role author
author
dc.subject.none.fl_str_mv ANISOTROPY
ATTENUATION
FINITE ELEMENTS
FRACTURES
POROELASTICITY
VELOCITY DISPERSION
topic ANISOTROPY
ATTENUATION
FINITE ELEMENTS
FRACTURES
POROELASTICITY
VELOCITY DISPERSION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A fluid-saturated poroelastic isotropic medium with aligned fractures behaves as a transversely isotropic and viscoelastic (TIV) medium when the predominant wavelength is much larger than the average distance between fractures. A planar fracture embedded in a fluid saturated poroelastic background medium can be modeled as a extremely thin and compliant porous layer. P-waves traveling in this type of medium induce fluid-pressure gradients at fractures and mesoscopic-scale heterogeneities, generating fluid flow and slow (diffusion) Biot waves, causing attenuation and dispersion of the fast modes (mesoscopic loss). A poroelastic medium with embedded aligned fractures exhibits significant attenuation and dispersion effects due to this mechanism, which can properly be represented at the macroscale with an equivalent TIV medium. In this work, we apply a set of compressibility and shear harmonic finite-element (FE) experiments on fractured highly heterogeneous poroelastic samples to determine the five complex and frequency dependent stiffnesses characterizing the equivalent medium. The experiments consider brine or patchy brine-CO2 saturated samples and a brine saturated sample with a heterogeneous (fractal) skeleton with fractures. We show that fractures induce strong seismic velocity and Q anisotropy, both for qP and qSV waves, enhanced either by patchy saturation or frame heterogeneity.
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina
Fil: Martinez Corredor, Robiel. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
description A fluid-saturated poroelastic isotropic medium with aligned fractures behaves as a transversely isotropic and viscoelastic (TIV) medium when the predominant wavelength is much larger than the average distance between fractures. A planar fracture embedded in a fluid saturated poroelastic background medium can be modeled as a extremely thin and compliant porous layer. P-waves traveling in this type of medium induce fluid-pressure gradients at fractures and mesoscopic-scale heterogeneities, generating fluid flow and slow (diffusion) Biot waves, causing attenuation and dispersion of the fast modes (mesoscopic loss). A poroelastic medium with embedded aligned fractures exhibits significant attenuation and dispersion effects due to this mechanism, which can properly be represented at the macroscale with an equivalent TIV medium. In this work, we apply a set of compressibility and shear harmonic finite-element (FE) experiments on fractured highly heterogeneous poroelastic samples to determine the five complex and frequency dependent stiffnesses characterizing the equivalent medium. The experiments consider brine or patchy brine-CO2 saturated samples and a brine saturated sample with a heterogeneous (fractal) skeleton with fractures. We show that fractures induce strong seismic velocity and Q anisotropy, both for qP and qSV waves, enhanced either by patchy saturation or frame heterogeneity.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89347
Santos, Juan Enrique; Martinez Corredor, Robiel; Carcione, Jose M.; Seismic velocity and Q anisotropy in fractured poroelastic media; Pergamon-Elsevier Science Ltd; International Journal Of Rock Mechanics And Mining Sciences; 70; 4-2014; 212-218
1365-1609
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89347
identifier_str_mv Santos, Juan Enrique; Martinez Corredor, Robiel; Carcione, Jose M.; Seismic velocity and Q anisotropy in fractured poroelastic media; Pergamon-Elsevier Science Ltd; International Journal Of Rock Mechanics And Mining Sciences; 70; 4-2014; 212-218
1365-1609
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijrmms.2014.05.004
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1365160914001269
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613035104141312
score 13.070432