Numerical experiments of fracture-induced velocity and attenuation anisotropy

Autores
Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fractures are common in the Earth  crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures  behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying  velocity and attenuation of seismic waves. Effective in this case means that the predominant  wavelength is much longer than the fracture spacing. Here, fractures are represented by  surface  discontinuities in the displacement u and particle velocity v as [k ·u+e·v], where  the  brackets denote the discontinuity across the surface,  k  is a fracture stiffness and e  is a fracture   viscosity.We consider an isotropic background medium, where a set of fractures are embedded. There exists  an analytical solution  with five stiffness components  for equispaced plane fractures and an homogeneous background  medium. The theory predicts that the equivalent medium is transversely  isotropic and viscoelastic (TIV). We then perform harmonic numerical experiments to  compute the stiffness components as a function of frequency, by using a Galerkin finite-element  procedure, and obtain the complex velocities of the medium as a function of frequency and  propagation direction, which provide the phase velocities, energy velocities (wavefronts) and  quality factors. The algorithm is tested with the analytical solution and then used to obtain the   stiffness components for general heterogeneous cases, where fractal variations of the fracture   compliances and background stiffnesses are considered.
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Santos, Juan Enrique. Universidad Nacional de La Plata; Argentina. University Street; Estados Unidos. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Fractures
Anisotropy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/237437

id CONICETDig_1605a9245e7ef62e656d2d51ea3707f1
oai_identifier_str oai:ri.conicet.gov.ar:11336/237437
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Numerical experiments of fracture-induced velocity and attenuation anisotropyCarcione, Jose M.Picotti, StefanoSantos, Juan EnriqueFracturesAnisotropyhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Fractures are common in the Earth  crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures  behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying  velocity and attenuation of seismic waves. Effective in this case means that the predominant  wavelength is much longer than the fracture spacing. Here, fractures are represented by  surface  discontinuities in the displacement u and particle velocity v as [k ·u+e·v], where  the  brackets denote the discontinuity across the surface,  k  is a fracture stiffness and e  is a fracture   viscosity.We consider an isotropic background medium, where a set of fractures are embedded. There exists  an analytical solution  with five stiffness components  for equispaced plane fractures and an homogeneous background  medium. The theory predicts that the equivalent medium is transversely  isotropic and viscoelastic (TIV). We then perform harmonic numerical experiments to  compute the stiffness components as a function of frequency, by using a Galerkin finite-element  procedure, and obtain the complex velocities of the medium as a function of frequency and  propagation direction, which provide the phase velocities, energy velocities (wavefronts) and  quality factors. The algorithm is tested with the analytical solution and then used to obtain the   stiffness components for general heterogeneous cases, where fractal variations of the fracture   compliances and background stiffnesses are considered.Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Santos, Juan Enrique. Universidad Nacional de La Plata; Argentina. University Street; Estados Unidos. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley Blackwell Publishing, Inc2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/237437Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Numerical experiments of fracture-induced velocity and attenuation anisotropy; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 191; 3; 11-2012; 1179-11910956-540XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article/191/3/1179/559602info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-246X.2012.05697.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:12Zoai:ri.conicet.gov.ar:11336/237437instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:13.142CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Numerical experiments of fracture-induced velocity and attenuation anisotropy
title Numerical experiments of fracture-induced velocity and attenuation anisotropy
spellingShingle Numerical experiments of fracture-induced velocity and attenuation anisotropy
Carcione, Jose M.
Fractures
Anisotropy
title_short Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_full Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_fullStr Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_full_unstemmed Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_sort Numerical experiments of fracture-induced velocity and attenuation anisotropy
dc.creator.none.fl_str_mv Carcione, Jose M.
Picotti, Stefano
Santos, Juan Enrique
author Carcione, Jose M.
author_facet Carcione, Jose M.
Picotti, Stefano
Santos, Juan Enrique
author_role author
author2 Picotti, Stefano
Santos, Juan Enrique
author2_role author
author
dc.subject.none.fl_str_mv Fractures
Anisotropy
topic Fractures
Anisotropy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Fractures are common in the Earth  crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures  behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying  velocity and attenuation of seismic waves. Effective in this case means that the predominant  wavelength is much longer than the fracture spacing. Here, fractures are represented by  surface  discontinuities in the displacement u and particle velocity v as [k ·u+e·v], where  the  brackets denote the discontinuity across the surface,  k  is a fracture stiffness and e  is a fracture   viscosity.We consider an isotropic background medium, where a set of fractures are embedded. There exists  an analytical solution  with five stiffness components  for equispaced plane fractures and an homogeneous background  medium. The theory predicts that the equivalent medium is transversely  isotropic and viscoelastic (TIV). We then perform harmonic numerical experiments to  compute the stiffness components as a function of frequency, by using a Galerkin finite-element  procedure, and obtain the complex velocities of the medium as a function of frequency and  propagation direction, which provide the phase velocities, energy velocities (wavefronts) and  quality factors. The algorithm is tested with the analytical solution and then used to obtain the   stiffness components for general heterogeneous cases, where fractal variations of the fracture   compliances and background stiffnesses are considered.
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Santos, Juan Enrique. Universidad Nacional de La Plata; Argentina. University Street; Estados Unidos. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Fractures are common in the Earth  crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures  behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying  velocity and attenuation of seismic waves. Effective in this case means that the predominant  wavelength is much longer than the fracture spacing. Here, fractures are represented by  surface  discontinuities in the displacement u and particle velocity v as [k ·u+e·v], where  the  brackets denote the discontinuity across the surface,  k  is a fracture stiffness and e  is a fracture   viscosity.We consider an isotropic background medium, where a set of fractures are embedded. There exists  an analytical solution  with five stiffness components  for equispaced plane fractures and an homogeneous background  medium. The theory predicts that the equivalent medium is transversely  isotropic and viscoelastic (TIV). We then perform harmonic numerical experiments to  compute the stiffness components as a function of frequency, by using a Galerkin finite-element  procedure, and obtain the complex velocities of the medium as a function of frequency and  propagation direction, which provide the phase velocities, energy velocities (wavefronts) and  quality factors. The algorithm is tested with the analytical solution and then used to obtain the   stiffness components for general heterogeneous cases, where fractal variations of the fracture   compliances and background stiffnesses are considered.
publishDate 2012
dc.date.none.fl_str_mv 2012-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/237437
Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Numerical experiments of fracture-induced velocity and attenuation anisotropy; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 191; 3; 11-2012; 1179-1191
0956-540X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/237437
identifier_str_mv Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Numerical experiments of fracture-induced velocity and attenuation anisotropy; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 191; 3; 11-2012; 1179-1191
0956-540X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article/191/3/1179/559602
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-246X.2012.05697.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613018577534976
score 13.070432