A rheological equation for anisotropic–anelastic media and simulation of field seismograms

Autores
Gauzellino, Patricia Mercedes; Carcione, Jose M.; Santos, Juan Enrique; Picotti, Stefano
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In many cases, geological formations are composed of layers of dissimilar properties whose thicknesses are small compared to the wavelength of the seismic signal, as for instance, a sandstone formation that has intra-reservoir thin mudstone layers. A proper model is represented by an anisotropic (transversely isotropic) and viscoelastic stress–strain relation. In this work, we consider a sandstone reservoir, such as the Utsira formation, saturated with CO2 and use White’s mesoscopic model to describe the energy loss of the seismic waves. The mudstone layers are assumed to be isotropic, poroelastic and lossless. Then, Backus averaging provides the complex and frequency-dependent stiffnesses of the transversely isotropic (TI) long-wavelength equivalent medium. We obtain the associated wave velocities and quality factors as a function of frequency and propagation direction, while the synthetic seismograms are computed with a finite-element (FE) method in the space-frequency domain. In this way, the frequency-dependent properties of the medium are modeled exactly, without the need of approximations with viscoelastic mechanical models. Numerical simulations of synthetic seismograms show results in agreement with the predictions of the theories and significant differences due to attenuation and anisotropic effects compared to the ideal isotropic and lossless rheology.
Fil: Gauzellino, Patricia Mercedes. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Materia
Poroelasticity
Anisotropy
Viscoelasticity
Finite Elements Method
Seismic Wave
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33512

id CONICETDig_ddfd46f3c0d5f65cbf8154167013e5f8
oai_identifier_str oai:ri.conicet.gov.ar:11336/33512
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A rheological equation for anisotropic–anelastic media and simulation of field seismogramsGauzellino, Patricia MercedesCarcione, Jose M.Santos, Juan EnriquePicotti, StefanoPoroelasticityAnisotropyViscoelasticityFinite Elements MethodSeismic Wavehttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In many cases, geological formations are composed of layers of dissimilar properties whose thicknesses are small compared to the wavelength of the seismic signal, as for instance, a sandstone formation that has intra-reservoir thin mudstone layers. A proper model is represented by an anisotropic (transversely isotropic) and viscoelastic stress–strain relation. In this work, we consider a sandstone reservoir, such as the Utsira formation, saturated with CO2 and use White’s mesoscopic model to describe the energy loss of the seismic waves. The mudstone layers are assumed to be isotropic, poroelastic and lossless. Then, Backus averaging provides the complex and frequency-dependent stiffnesses of the transversely isotropic (TI) long-wavelength equivalent medium. We obtain the associated wave velocities and quality factors as a function of frequency and propagation direction, while the synthetic seismograms are computed with a finite-element (FE) method in the space-frequency domain. In this way, the frequency-dependent properties of the medium are modeled exactly, without the need of approximations with viscoelastic mechanical models. Numerical simulations of synthetic seismograms show results in agreement with the predictions of the theories and significant differences due to attenuation and anisotropic effects compared to the ideal isotropic and lossless rheology.Fil: Gauzellino, Patricia Mercedes. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; ArgentinaFil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaElsevier2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33512Picotti, Stefano; Gauzellino, Patricia Mercedes; Santos, Juan Enrique; Carcione, Jose M.; A rheological equation for anisotropic–anelastic media and simulation of field seismograms; Elsevier; Wave Motion; 51; 5; 1-2014; 743-7570165-2125CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.wavemoti.2014.01.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0165212514000031info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:35Zoai:ri.conicet.gov.ar:11336/33512instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:36.246CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A rheological equation for anisotropic–anelastic media and simulation of field seismograms
title A rheological equation for anisotropic–anelastic media and simulation of field seismograms
spellingShingle A rheological equation for anisotropic–anelastic media and simulation of field seismograms
Gauzellino, Patricia Mercedes
Poroelasticity
Anisotropy
Viscoelasticity
Finite Elements Method
Seismic Wave
title_short A rheological equation for anisotropic–anelastic media and simulation of field seismograms
title_full A rheological equation for anisotropic–anelastic media and simulation of field seismograms
title_fullStr A rheological equation for anisotropic–anelastic media and simulation of field seismograms
title_full_unstemmed A rheological equation for anisotropic–anelastic media and simulation of field seismograms
title_sort A rheological equation for anisotropic–anelastic media and simulation of field seismograms
dc.creator.none.fl_str_mv Gauzellino, Patricia Mercedes
Carcione, Jose M.
Santos, Juan Enrique
Picotti, Stefano
author Gauzellino, Patricia Mercedes
author_facet Gauzellino, Patricia Mercedes
Carcione, Jose M.
Santos, Juan Enrique
Picotti, Stefano
author_role author
author2 Carcione, Jose M.
Santos, Juan Enrique
Picotti, Stefano
author2_role author
author
author
dc.subject.none.fl_str_mv Poroelasticity
Anisotropy
Viscoelasticity
Finite Elements Method
Seismic Wave
topic Poroelasticity
Anisotropy
Viscoelasticity
Finite Elements Method
Seismic Wave
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In many cases, geological formations are composed of layers of dissimilar properties whose thicknesses are small compared to the wavelength of the seismic signal, as for instance, a sandstone formation that has intra-reservoir thin mudstone layers. A proper model is represented by an anisotropic (transversely isotropic) and viscoelastic stress–strain relation. In this work, we consider a sandstone reservoir, such as the Utsira formation, saturated with CO2 and use White’s mesoscopic model to describe the energy loss of the seismic waves. The mudstone layers are assumed to be isotropic, poroelastic and lossless. Then, Backus averaging provides the complex and frequency-dependent stiffnesses of the transversely isotropic (TI) long-wavelength equivalent medium. We obtain the associated wave velocities and quality factors as a function of frequency and propagation direction, while the synthetic seismograms are computed with a finite-element (FE) method in the space-frequency domain. In this way, the frequency-dependent properties of the medium are modeled exactly, without the need of approximations with viscoelastic mechanical models. Numerical simulations of synthetic seismograms show results in agreement with the predictions of the theories and significant differences due to attenuation and anisotropic effects compared to the ideal isotropic and lossless rheology.
Fil: Gauzellino, Patricia Mercedes. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
description In many cases, geological formations are composed of layers of dissimilar properties whose thicknesses are small compared to the wavelength of the seismic signal, as for instance, a sandstone formation that has intra-reservoir thin mudstone layers. A proper model is represented by an anisotropic (transversely isotropic) and viscoelastic stress–strain relation. In this work, we consider a sandstone reservoir, such as the Utsira formation, saturated with CO2 and use White’s mesoscopic model to describe the energy loss of the seismic waves. The mudstone layers are assumed to be isotropic, poroelastic and lossless. Then, Backus averaging provides the complex and frequency-dependent stiffnesses of the transversely isotropic (TI) long-wavelength equivalent medium. We obtain the associated wave velocities and quality factors as a function of frequency and propagation direction, while the synthetic seismograms are computed with a finite-element (FE) method in the space-frequency domain. In this way, the frequency-dependent properties of the medium are modeled exactly, without the need of approximations with viscoelastic mechanical models. Numerical simulations of synthetic seismograms show results in agreement with the predictions of the theories and significant differences due to attenuation and anisotropic effects compared to the ideal isotropic and lossless rheology.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33512
Picotti, Stefano; Gauzellino, Patricia Mercedes; Santos, Juan Enrique; Carcione, Jose M.; A rheological equation for anisotropic–anelastic media and simulation of field seismograms; Elsevier; Wave Motion; 51; 5; 1-2014; 743-757
0165-2125
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33512
identifier_str_mv Picotti, Stefano; Gauzellino, Patricia Mercedes; Santos, Juan Enrique; Carcione, Jose M.; A rheological equation for anisotropic–anelastic media and simulation of field seismograms; Elsevier; Wave Motion; 51; 5; 1-2014; 743-757
0165-2125
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.wavemoti.2014.01.001
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0165212514000031
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614351491694592
score 13.070432