Numerical experiments of fracture-induced velocity and attenuation anisotropy
- Autores
- Carcione, J. M.; Picotti, S.; Santos, Juan Enrique
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fractures are common in the Earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying velocity and attenuation of seismic waves. Effective in this case means that the predominant wavelength is much longer than the fracture spacing. Here, fractures are represented by surface discontinuities in the displacement u and particle velocity v as [κ · u + η · v], where the brackets denote the discontinuity across the surface, κ is a fracture stiffness and η is a fracture viscosity. We consider an isotropic background medium, where a set of fractures are embedded. There exists an analytical solution-with five stiffness components-for equispaced plane fractures and an homogeneous background medium. The theory predicts that the equivalent medium is transversely isotropic and viscoelastic. We then perform harmonic numerical experiments to compute the stiffness components as a function of frequency, by using a Galerkin finite-element procedure, and obtain the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts) and quality factors. The algorithm is tested with the analytical solution and then used to obtain the stiffness components for general heterogeneous cases, where fractal variations of the fracture compliances and background stiffnesses are considered.
Este documento tiene una corrección (ver documento relacionado).
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Fractures and faults
Numerical solutions
Seismic anisotropy
Seismic attenuation
Wave propagation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/87838
Ver los metadatos del registro completo
id |
SEDICI_9b61bd491b3be42b6d57de288cb1d78d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/87838 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Numerical experiments of fracture-induced velocity and attenuation anisotropyCarcione, J. M.Picotti, S.Santos, Juan EnriqueCiencias AstronómicasFractures and faultsNumerical solutionsSeismic anisotropySeismic attenuationWave propagationFractures are common in the Earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying velocity and attenuation of seismic waves. Effective in this case means that the predominant wavelength is much longer than the fracture spacing. Here, fractures are represented by surface discontinuities in the displacement u and particle velocity v as [κ · u + η · v], where the brackets denote the discontinuity across the surface, κ is a fracture stiffness and η is a fracture viscosity. We consider an isotropic background medium, where a set of fractures are embedded. There exists an analytical solution-with five stiffness components-for equispaced plane fractures and an homogeneous background medium. The theory predicts that the equivalent medium is transversely isotropic and viscoelastic. We then perform harmonic numerical experiments to compute the stiffness components as a function of frequency, by using a Galerkin finite-element procedure, and obtain the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts) and quality factors. The algorithm is tested with the analytical solution and then used to obtain the stiffness components for general heterogeneous cases, where fractal variations of the fracture compliances and background stiffnesses are considered.Este documento tiene una corrección (ver documento relacionado).Facultad de Ciencias Astronómicas y Geofísicas2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1179-1191http://sedici.unlp.edu.ar/handle/10915/87838enginfo:eu-repo/semantics/altIdentifier/issn/0956-540Xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-246X.2012.05697.xinfo:eu-repo/semantics/reference/hdl/10915/87839info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:58:44Zoai:sedici.unlp.edu.ar:10915/87838Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:58:44.638SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Numerical experiments of fracture-induced velocity and attenuation anisotropy |
title |
Numerical experiments of fracture-induced velocity and attenuation anisotropy |
spellingShingle |
Numerical experiments of fracture-induced velocity and attenuation anisotropy Carcione, J. M. Ciencias Astronómicas Fractures and faults Numerical solutions Seismic anisotropy Seismic attenuation Wave propagation |
title_short |
Numerical experiments of fracture-induced velocity and attenuation anisotropy |
title_full |
Numerical experiments of fracture-induced velocity and attenuation anisotropy |
title_fullStr |
Numerical experiments of fracture-induced velocity and attenuation anisotropy |
title_full_unstemmed |
Numerical experiments of fracture-induced velocity and attenuation anisotropy |
title_sort |
Numerical experiments of fracture-induced velocity and attenuation anisotropy |
dc.creator.none.fl_str_mv |
Carcione, J. M. Picotti, S. Santos, Juan Enrique |
author |
Carcione, J. M. |
author_facet |
Carcione, J. M. Picotti, S. Santos, Juan Enrique |
author_role |
author |
author2 |
Picotti, S. Santos, Juan Enrique |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Fractures and faults Numerical solutions Seismic anisotropy Seismic attenuation Wave propagation |
topic |
Ciencias Astronómicas Fractures and faults Numerical solutions Seismic anisotropy Seismic attenuation Wave propagation |
dc.description.none.fl_txt_mv |
Fractures are common in the Earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying velocity and attenuation of seismic waves. Effective in this case means that the predominant wavelength is much longer than the fracture spacing. Here, fractures are represented by surface discontinuities in the displacement u and particle velocity v as [κ · u + η · v], where the brackets denote the discontinuity across the surface, κ is a fracture stiffness and η is a fracture viscosity. We consider an isotropic background medium, where a set of fractures are embedded. There exists an analytical solution-with five stiffness components-for equispaced plane fractures and an homogeneous background medium. The theory predicts that the equivalent medium is transversely isotropic and viscoelastic. We then perform harmonic numerical experiments to compute the stiffness components as a function of frequency, by using a Galerkin finite-element procedure, and obtain the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts) and quality factors. The algorithm is tested with the analytical solution and then used to obtain the stiffness components for general heterogeneous cases, where fractal variations of the fracture compliances and background stiffnesses are considered. Este documento tiene una corrección (ver documento relacionado). Facultad de Ciencias Astronómicas y Geofísicas |
description |
Fractures are common in the Earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying velocity and attenuation of seismic waves. Effective in this case means that the predominant wavelength is much longer than the fracture spacing. Here, fractures are represented by surface discontinuities in the displacement u and particle velocity v as [κ · u + η · v], where the brackets denote the discontinuity across the surface, κ is a fracture stiffness and η is a fracture viscosity. We consider an isotropic background medium, where a set of fractures are embedded. There exists an analytical solution-with five stiffness components-for equispaced plane fractures and an homogeneous background medium. The theory predicts that the equivalent medium is transversely isotropic and viscoelastic. We then perform harmonic numerical experiments to compute the stiffness components as a function of frequency, by using a Galerkin finite-element procedure, and obtain the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts) and quality factors. The algorithm is tested with the analytical solution and then used to obtain the stiffness components for general heterogeneous cases, where fractal variations of the fracture compliances and background stiffnesses are considered. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/87838 |
url |
http://sedici.unlp.edu.ar/handle/10915/87838 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0956-540X info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-246X.2012.05697.x info:eu-repo/semantics/reference/hdl/10915/87839 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1179-1191 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532461785481216 |
score |
13.004268 |