Numerical experiments of fracture-induced velocity and attenuation anisotropy

Autores
Carcione, J. M.; Picotti, S.; Santos, Juan Enrique
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fractures are common in the Earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying velocity and attenuation of seismic waves. Effective in this case means that the predominant wavelength is much longer than the fracture spacing. Here, fractures are represented by surface discontinuities in the displacement u and particle velocity v as [κ · u + η · v], where the brackets denote the discontinuity across the surface, κ is a fracture stiffness and η is a fracture viscosity. We consider an isotropic background medium, where a set of fractures are embedded. There exists an analytical solution-with five stiffness components-for equispaced plane fractures and an homogeneous background medium. The theory predicts that the equivalent medium is transversely isotropic and viscoelastic. We then perform harmonic numerical experiments to compute the stiffness components as a function of frequency, by using a Galerkin finite-element procedure, and obtain the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts) and quality factors. The algorithm is tested with the analytical solution and then used to obtain the stiffness components for general heterogeneous cases, where fractal variations of the fracture compliances and background stiffnesses are considered.
Este documento tiene una corrección (ver documento relacionado).
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Fractures and faults
Numerical solutions
Seismic anisotropy
Seismic attenuation
Wave propagation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/87838

id SEDICI_9b61bd491b3be42b6d57de288cb1d78d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/87838
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Numerical experiments of fracture-induced velocity and attenuation anisotropyCarcione, J. M.Picotti, S.Santos, Juan EnriqueCiencias AstronómicasFractures and faultsNumerical solutionsSeismic anisotropySeismic attenuationWave propagationFractures are common in the Earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying velocity and attenuation of seismic waves. Effective in this case means that the predominant wavelength is much longer than the fracture spacing. Here, fractures are represented by surface discontinuities in the displacement u and particle velocity v as [κ · u + η · v], where the brackets denote the discontinuity across the surface, κ is a fracture stiffness and η is a fracture viscosity. We consider an isotropic background medium, where a set of fractures are embedded. There exists an analytical solution-with five stiffness components-for equispaced plane fractures and an homogeneous background medium. The theory predicts that the equivalent medium is transversely isotropic and viscoelastic. We then perform harmonic numerical experiments to compute the stiffness components as a function of frequency, by using a Galerkin finite-element procedure, and obtain the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts) and quality factors. The algorithm is tested with the analytical solution and then used to obtain the stiffness components for general heterogeneous cases, where fractal variations of the fracture compliances and background stiffnesses are considered.Este documento tiene una corrección (ver documento relacionado).Facultad de Ciencias Astronómicas y Geofísicas2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1179-1191http://sedici.unlp.edu.ar/handle/10915/87838enginfo:eu-repo/semantics/altIdentifier/issn/0956-540Xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-246X.2012.05697.xinfo:eu-repo/semantics/reference/hdl/10915/87839info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:58:44Zoai:sedici.unlp.edu.ar:10915/87838Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:58:44.638SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Numerical experiments of fracture-induced velocity and attenuation anisotropy
title Numerical experiments of fracture-induced velocity and attenuation anisotropy
spellingShingle Numerical experiments of fracture-induced velocity and attenuation anisotropy
Carcione, J. M.
Ciencias Astronómicas
Fractures and faults
Numerical solutions
Seismic anisotropy
Seismic attenuation
Wave propagation
title_short Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_full Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_fullStr Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_full_unstemmed Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_sort Numerical experiments of fracture-induced velocity and attenuation anisotropy
dc.creator.none.fl_str_mv Carcione, J. M.
Picotti, S.
Santos, Juan Enrique
author Carcione, J. M.
author_facet Carcione, J. M.
Picotti, S.
Santos, Juan Enrique
author_role author
author2 Picotti, S.
Santos, Juan Enrique
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Fractures and faults
Numerical solutions
Seismic anisotropy
Seismic attenuation
Wave propagation
topic Ciencias Astronómicas
Fractures and faults
Numerical solutions
Seismic anisotropy
Seismic attenuation
Wave propagation
dc.description.none.fl_txt_mv Fractures are common in the Earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying velocity and attenuation of seismic waves. Effective in this case means that the predominant wavelength is much longer than the fracture spacing. Here, fractures are represented by surface discontinuities in the displacement u and particle velocity v as [κ · u + η · v], where the brackets denote the discontinuity across the surface, κ is a fracture stiffness and η is a fracture viscosity. We consider an isotropic background medium, where a set of fractures are embedded. There exists an analytical solution-with five stiffness components-for equispaced plane fractures and an homogeneous background medium. The theory predicts that the equivalent medium is transversely isotropic and viscoelastic. We then perform harmonic numerical experiments to compute the stiffness components as a function of frequency, by using a Galerkin finite-element procedure, and obtain the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts) and quality factors. The algorithm is tested with the analytical solution and then used to obtain the stiffness components for general heterogeneous cases, where fractal variations of the fracture compliances and background stiffnesses are considered.
Este documento tiene una corrección (ver documento relacionado).
Facultad de Ciencias Astronómicas y Geofísicas
description Fractures are common in the Earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying velocity and attenuation of seismic waves. Effective in this case means that the predominant wavelength is much longer than the fracture spacing. Here, fractures are represented by surface discontinuities in the displacement u and particle velocity v as [κ · u + η · v], where the brackets denote the discontinuity across the surface, κ is a fracture stiffness and η is a fracture viscosity. We consider an isotropic background medium, where a set of fractures are embedded. There exists an analytical solution-with five stiffness components-for equispaced plane fractures and an homogeneous background medium. The theory predicts that the equivalent medium is transversely isotropic and viscoelastic. We then perform harmonic numerical experiments to compute the stiffness components as a function of frequency, by using a Galerkin finite-element procedure, and obtain the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts) and quality factors. The algorithm is tested with the analytical solution and then used to obtain the stiffness components for general heterogeneous cases, where fractal variations of the fracture compliances and background stiffnesses are considered.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/87838
url http://sedici.unlp.edu.ar/handle/10915/87838
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0956-540X
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-246X.2012.05697.x
info:eu-repo/semantics/reference/hdl/10915/87839
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1179-1191
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532461785481216
score 13.004268