Approximation by crystal-refinable functions
- Autores
- Molter, Ursula Maria; Moure, María del Carmen; Quintero, Alejandro Daniel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Γ be a crystal group in Rd. A function φ:Rd⟶C is said to be crystal-refinable (or Γ-refinable) if it is a linear combination of finitely many of the rescaled and translated functions φ(γ−1(ax)), where the translationsγ are taken on a crystal group Γ, and a is an expansive dilation matrix such that aΓa−1⊂Γ. A Γ-refinable function φ:Rd→C satisfies a refinement equation φ(x)=∑γ∈Γdγφ(γ−1(ax)) with dγ∈C. Let S(φ) be the linear span of {φ(γ−1(x)):γ∈Γ} and Sh={f(x/h):f∈S(φ)}. One important property of S(φ) is, how well it approximates functions in L2(Rd). This property is very closely related to the crystal-accuracy of S(φ), which is the highest degree p such that all multivariate polynomials q(x) of degree(q)
Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Moure, María del Carmen. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Quintero, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CRYSTAL GROUPS
APPROXIMATION PROPERTY
COMPOSITE DILATIONS
REFINEMENT EQUATION
ACCURACY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136210
Ver los metadatos del registro completo
id |
CONICETDig_263eb81bb4b2cd9b32160742664f83f8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136210 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approximation by crystal-refinable functionsMolter, Ursula MariaMoure, María del CarmenQuintero, Alejandro DanielCRYSTAL GROUPSAPPROXIMATION PROPERTYCOMPOSITE DILATIONSREFINEMENT EQUATIONACCURACYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Γ be a crystal group in Rd. A function φ:Rd⟶C is said to be crystal-refinable (or Γ-refinable) if it is a linear combination of finitely many of the rescaled and translated functions φ(γ−1(ax)), where the translationsγ are taken on a crystal group Γ, and a is an expansive dilation matrix such that aΓa−1⊂Γ. A Γ-refinable function φ:Rd→C satisfies a refinement equation φ(x)=∑γ∈Γdγφ(γ−1(ax)) with dγ∈C. Let S(φ) be the linear span of {φ(γ−1(x)):γ∈Γ} and Sh={f(x/h):f∈S(φ)}. One important property of S(φ) is, how well it approximates functions in L2(Rd). This property is very closely related to the crystal-accuracy of S(φ), which is the highest degree p such that all multivariate polynomials q(x) of degree(q)Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Moure, María del Carmen. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Quintero, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2019-10-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136210Molter, Ursula Maria; Moure, María del Carmen; Quintero, Alejandro Daniel; Approximation by crystal-refinable functions; Springer; Geometriae Dedicata; 207; 1; 24-10-2019; 1-210046-5755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10711-019-00483-9info:eu-repo/semantics/altIdentifier/doi/10.1007/s10711-019-00483-9info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1701.08226info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:26Zoai:ri.conicet.gov.ar:11336/136210instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:27.285CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approximation by crystal-refinable functions |
title |
Approximation by crystal-refinable functions |
spellingShingle |
Approximation by crystal-refinable functions Molter, Ursula Maria CRYSTAL GROUPS APPROXIMATION PROPERTY COMPOSITE DILATIONS REFINEMENT EQUATION ACCURACY |
title_short |
Approximation by crystal-refinable functions |
title_full |
Approximation by crystal-refinable functions |
title_fullStr |
Approximation by crystal-refinable functions |
title_full_unstemmed |
Approximation by crystal-refinable functions |
title_sort |
Approximation by crystal-refinable functions |
dc.creator.none.fl_str_mv |
Molter, Ursula Maria Moure, María del Carmen Quintero, Alejandro Daniel |
author |
Molter, Ursula Maria |
author_facet |
Molter, Ursula Maria Moure, María del Carmen Quintero, Alejandro Daniel |
author_role |
author |
author2 |
Moure, María del Carmen Quintero, Alejandro Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CRYSTAL GROUPS APPROXIMATION PROPERTY COMPOSITE DILATIONS REFINEMENT EQUATION ACCURACY |
topic |
CRYSTAL GROUPS APPROXIMATION PROPERTY COMPOSITE DILATIONS REFINEMENT EQUATION ACCURACY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let Γ be a crystal group in Rd. A function φ:Rd⟶C is said to be crystal-refinable (or Γ-refinable) if it is a linear combination of finitely many of the rescaled and translated functions φ(γ−1(ax)), where the translationsγ are taken on a crystal group Γ, and a is an expansive dilation matrix such that aΓa−1⊂Γ. A Γ-refinable function φ:Rd→C satisfies a refinement equation φ(x)=∑γ∈Γdγφ(γ−1(ax)) with dγ∈C. Let S(φ) be the linear span of {φ(γ−1(x)):γ∈Γ} and Sh={f(x/h):f∈S(φ)}. One important property of S(φ) is, how well it approximates functions in L2(Rd). This property is very closely related to the crystal-accuracy of S(φ), which is the highest degree p such that all multivariate polynomials q(x) of degree(q) Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Moure, María del Carmen. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Quintero, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Let Γ be a crystal group in Rd. A function φ:Rd⟶C is said to be crystal-refinable (or Γ-refinable) if it is a linear combination of finitely many of the rescaled and translated functions φ(γ−1(ax)), where the translationsγ are taken on a crystal group Γ, and a is an expansive dilation matrix such that aΓa−1⊂Γ. A Γ-refinable function φ:Rd→C satisfies a refinement equation φ(x)=∑γ∈Γdγφ(γ−1(ax)) with dγ∈C. Let S(φ) be the linear span of {φ(γ−1(x)):γ∈Γ} and Sh={f(x/h):f∈S(φ)}. One important property of S(φ) is, how well it approximates functions in L2(Rd). This property is very closely related to the crystal-accuracy of S(φ), which is the highest degree p such that all multivariate polynomials q(x) of degree(q) |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136210 Molter, Ursula Maria; Moure, María del Carmen; Quintero, Alejandro Daniel; Approximation by crystal-refinable functions; Springer; Geometriae Dedicata; 207; 1; 24-10-2019; 1-21 0046-5755 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/136210 |
identifier_str_mv |
Molter, Ursula Maria; Moure, María del Carmen; Quintero, Alejandro Daniel; Approximation by crystal-refinable functions; Springer; Geometriae Dedicata; 207; 1; 24-10-2019; 1-21 0046-5755 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10711-019-00483-9 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10711-019-00483-9 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1701.08226 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613994232414208 |
score |
13.070432 |