Approximation by crystal-refinable functions
- Autores
- Molter, Ursula Maria; Moure, María del Carmen; Quintero, Alejandro Daniel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Γ be a crystal group in Rd. A function φ:Rd⟶C is said to be crystal-refinable (or Γ-refinable) if it is a linear combination of finitely many of the rescaled and translated functions φ(γ−1(ax)), where the translationsγ are taken on a crystal group Γ, and a is an expansive dilation matrix such that aΓa−1⊂Γ. A Γ-refinable function φ:Rd→C satisfies a refinement equation φ(x)=∑γ∈Γdγφ(γ−1(ax)) with dγ∈C. Let S(φ) be the linear span of {φ(γ−1(x)):γ∈Γ} and Sh={f(x/h):f∈S(φ)}. One important property of S(φ) is, how well it approximates functions in L2(Rd). This property is very closely related to the crystal-accuracy of S(φ), which is the highest degree p such that all multivariate polynomials q(x) of degree(q)
Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Moure, María del Carmen. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Quintero, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CRYSTAL GROUPS
APPROXIMATION PROPERTY
COMPOSITE DILATIONS
REFINEMENT EQUATION
ACCURACY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136210
Ver los metadatos del registro completo
| id |
CONICETDig_263eb81bb4b2cd9b32160742664f83f8 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136210 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Approximation by crystal-refinable functionsMolter, Ursula MariaMoure, María del CarmenQuintero, Alejandro DanielCRYSTAL GROUPSAPPROXIMATION PROPERTYCOMPOSITE DILATIONSREFINEMENT EQUATIONACCURACYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Γ be a crystal group in Rd. A function φ:Rd⟶C is said to be crystal-refinable (or Γ-refinable) if it is a linear combination of finitely many of the rescaled and translated functions φ(γ−1(ax)), where the translationsγ are taken on a crystal group Γ, and a is an expansive dilation matrix such that aΓa−1⊂Γ. A Γ-refinable function φ:Rd→C satisfies a refinement equation φ(x)=∑γ∈Γdγφ(γ−1(ax)) with dγ∈C. Let S(φ) be the linear span of {φ(γ−1(x)):γ∈Γ} and Sh={f(x/h):f∈S(φ)}. One important property of S(φ) is, how well it approximates functions in L2(Rd). This property is very closely related to the crystal-accuracy of S(φ), which is the highest degree p such that all multivariate polynomials q(x) of degree(q)Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Moure, María del Carmen. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Quintero, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2019-10-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136210Molter, Ursula Maria; Moure, María del Carmen; Quintero, Alejandro Daniel; Approximation by crystal-refinable functions; Springer; Geometriae Dedicata; 207; 1; 24-10-2019; 1-210046-5755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10711-019-00483-9info:eu-repo/semantics/altIdentifier/doi/10.1007/s10711-019-00483-9info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1701.08226info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:40:26Zoai:ri.conicet.gov.ar:11336/136210instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:40:26.603CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Approximation by crystal-refinable functions |
| title |
Approximation by crystal-refinable functions |
| spellingShingle |
Approximation by crystal-refinable functions Molter, Ursula Maria CRYSTAL GROUPS APPROXIMATION PROPERTY COMPOSITE DILATIONS REFINEMENT EQUATION ACCURACY |
| title_short |
Approximation by crystal-refinable functions |
| title_full |
Approximation by crystal-refinable functions |
| title_fullStr |
Approximation by crystal-refinable functions |
| title_full_unstemmed |
Approximation by crystal-refinable functions |
| title_sort |
Approximation by crystal-refinable functions |
| dc.creator.none.fl_str_mv |
Molter, Ursula Maria Moure, María del Carmen Quintero, Alejandro Daniel |
| author |
Molter, Ursula Maria |
| author_facet |
Molter, Ursula Maria Moure, María del Carmen Quintero, Alejandro Daniel |
| author_role |
author |
| author2 |
Moure, María del Carmen Quintero, Alejandro Daniel |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
CRYSTAL GROUPS APPROXIMATION PROPERTY COMPOSITE DILATIONS REFINEMENT EQUATION ACCURACY |
| topic |
CRYSTAL GROUPS APPROXIMATION PROPERTY COMPOSITE DILATIONS REFINEMENT EQUATION ACCURACY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let Γ be a crystal group in Rd. A function φ:Rd⟶C is said to be crystal-refinable (or Γ-refinable) if it is a linear combination of finitely many of the rescaled and translated functions φ(γ−1(ax)), where the translationsγ are taken on a crystal group Γ, and a is an expansive dilation matrix such that aΓa−1⊂Γ. A Γ-refinable function φ:Rd→C satisfies a refinement equation φ(x)=∑γ∈Γdγφ(γ−1(ax)) with dγ∈C. Let S(φ) be the linear span of {φ(γ−1(x)):γ∈Γ} and Sh={f(x/h):f∈S(φ)}. One important property of S(φ) is, how well it approximates functions in L2(Rd). This property is very closely related to the crystal-accuracy of S(φ), which is the highest degree p such that all multivariate polynomials q(x) of degree(q) Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Moure, María del Carmen. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Quintero, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Let Γ be a crystal group in Rd. A function φ:Rd⟶C is said to be crystal-refinable (or Γ-refinable) if it is a linear combination of finitely many of the rescaled and translated functions φ(γ−1(ax)), where the translationsγ are taken on a crystal group Γ, and a is an expansive dilation matrix such that aΓa−1⊂Γ. A Γ-refinable function φ:Rd→C satisfies a refinement equation φ(x)=∑γ∈Γdγφ(γ−1(ax)) with dγ∈C. Let S(φ) be the linear span of {φ(γ−1(x)):γ∈Γ} and Sh={f(x/h):f∈S(φ)}. One important property of S(φ) is, how well it approximates functions in L2(Rd). This property is very closely related to the crystal-accuracy of S(φ), which is the highest degree p such that all multivariate polynomials q(x) of degree(q) |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-10-24 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136210 Molter, Ursula Maria; Moure, María del Carmen; Quintero, Alejandro Daniel; Approximation by crystal-refinable functions; Springer; Geometriae Dedicata; 207; 1; 24-10-2019; 1-21 0046-5755 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/136210 |
| identifier_str_mv |
Molter, Ursula Maria; Moure, María del Carmen; Quintero, Alejandro Daniel; Approximation by crystal-refinable functions; Springer; Geometriae Dedicata; 207; 1; 24-10-2019; 1-21 0046-5755 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10711-019-00483-9 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10711-019-00483-9 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1701.08226 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782075766571008 |
| score |
12.982451 |