Refinable spaces and local approximation estimates for hierarchical splines

Autores
Buffa, Annalisa; Garau, Eduardo Mario
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms.
Fil: Buffa, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Matematica Applicata e Tecnologie Informatiche; Italia
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
Adaptivity in Isogeometric Analysis
Hierarchical Splines
Quasi-Interpolation
Local Refinement
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/30419

id CONICETDig_36435d3b9b5c50da9d6b22a6fef57040
oai_identifier_str oai:ri.conicet.gov.ar:11336/30419
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Refinable spaces and local approximation estimates for hierarchical splinesBuffa, AnnalisaGarau, Eduardo MarioAdaptivity in Isogeometric AnalysisHierarchical SplinesQuasi-InterpolationLocal Refinementhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms.Fil: Buffa, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Matematica Applicata e Tecnologie Informatiche; ItaliaFil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaOxford University Press2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30419Buffa, Annalisa; Garau, Eduardo Mario; Refinable spaces and local approximation estimates for hierarchical splines; Oxford University Press; Ima Journal Of Numerical Analysis; 37; 3; 7-2017; 1125-11490272-49791464-3642CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drw035info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/37/3/1125/2670017?redirectedFrom=fulltextinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:20Zoai:ri.conicet.gov.ar:11336/30419instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:20.342CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Refinable spaces and local approximation estimates for hierarchical splines
title Refinable spaces and local approximation estimates for hierarchical splines
spellingShingle Refinable spaces and local approximation estimates for hierarchical splines
Buffa, Annalisa
Adaptivity in Isogeometric Analysis
Hierarchical Splines
Quasi-Interpolation
Local Refinement
title_short Refinable spaces and local approximation estimates for hierarchical splines
title_full Refinable spaces and local approximation estimates for hierarchical splines
title_fullStr Refinable spaces and local approximation estimates for hierarchical splines
title_full_unstemmed Refinable spaces and local approximation estimates for hierarchical splines
title_sort Refinable spaces and local approximation estimates for hierarchical splines
dc.creator.none.fl_str_mv Buffa, Annalisa
Garau, Eduardo Mario
author Buffa, Annalisa
author_facet Buffa, Annalisa
Garau, Eduardo Mario
author_role author
author2 Garau, Eduardo Mario
author2_role author
dc.subject.none.fl_str_mv Adaptivity in Isogeometric Analysis
Hierarchical Splines
Quasi-Interpolation
Local Refinement
topic Adaptivity in Isogeometric Analysis
Hierarchical Splines
Quasi-Interpolation
Local Refinement
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms.
Fil: Buffa, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Matematica Applicata e Tecnologie Informatiche; Italia
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms.
publishDate 2017
dc.date.none.fl_str_mv 2017-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/30419
Buffa, Annalisa; Garau, Eduardo Mario; Refinable spaces and local approximation estimates for hierarchical splines; Oxford University Press; Ima Journal Of Numerical Analysis; 37; 3; 7-2017; 1125-1149
0272-4979
1464-3642
CONICET Digital
CONICET
url http://hdl.handle.net/11336/30419
identifier_str_mv Buffa, Annalisa; Garau, Eduardo Mario; Refinable spaces and local approximation estimates for hierarchical splines; Oxford University Press; Ima Journal Of Numerical Analysis; 37; 3; 7-2017; 1125-1149
0272-4979
1464-3642
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drw035
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/37/3/1125/2670017?redirectedFrom=fulltext
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613062198296576
score 13.070432