Refinable spaces and local approximation estimates for hierarchical splines
- Autores
- Buffa, Annalisa; Garau, Eduardo Mario
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms.
Fil: Buffa, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Matematica Applicata e Tecnologie Informatiche; Italia
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Adaptivity in Isogeometric Analysis
Hierarchical Splines
Quasi-Interpolation
Local Refinement - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30419
Ver los metadatos del registro completo
id |
CONICETDig_36435d3b9b5c50da9d6b22a6fef57040 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30419 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Refinable spaces and local approximation estimates for hierarchical splinesBuffa, AnnalisaGarau, Eduardo MarioAdaptivity in Isogeometric AnalysisHierarchical SplinesQuasi-InterpolationLocal Refinementhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms.Fil: Buffa, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Matematica Applicata e Tecnologie Informatiche; ItaliaFil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaOxford University Press2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30419Buffa, Annalisa; Garau, Eduardo Mario; Refinable spaces and local approximation estimates for hierarchical splines; Oxford University Press; Ima Journal Of Numerical Analysis; 37; 3; 7-2017; 1125-11490272-49791464-3642CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drw035info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/37/3/1125/2670017?redirectedFrom=fulltextinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:20Zoai:ri.conicet.gov.ar:11336/30419instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:20.342CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Refinable spaces and local approximation estimates for hierarchical splines |
title |
Refinable spaces and local approximation estimates for hierarchical splines |
spellingShingle |
Refinable spaces and local approximation estimates for hierarchical splines Buffa, Annalisa Adaptivity in Isogeometric Analysis Hierarchical Splines Quasi-Interpolation Local Refinement |
title_short |
Refinable spaces and local approximation estimates for hierarchical splines |
title_full |
Refinable spaces and local approximation estimates for hierarchical splines |
title_fullStr |
Refinable spaces and local approximation estimates for hierarchical splines |
title_full_unstemmed |
Refinable spaces and local approximation estimates for hierarchical splines |
title_sort |
Refinable spaces and local approximation estimates for hierarchical splines |
dc.creator.none.fl_str_mv |
Buffa, Annalisa Garau, Eduardo Mario |
author |
Buffa, Annalisa |
author_facet |
Buffa, Annalisa Garau, Eduardo Mario |
author_role |
author |
author2 |
Garau, Eduardo Mario |
author2_role |
author |
dc.subject.none.fl_str_mv |
Adaptivity in Isogeometric Analysis Hierarchical Splines Quasi-Interpolation Local Refinement |
topic |
Adaptivity in Isogeometric Analysis Hierarchical Splines Quasi-Interpolation Local Refinement |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms. Fil: Buffa, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Matematica Applicata e Tecnologie Informatiche; Italia Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30419 Buffa, Annalisa; Garau, Eduardo Mario; Refinable spaces and local approximation estimates for hierarchical splines; Oxford University Press; Ima Journal Of Numerical Analysis; 37; 3; 7-2017; 1125-1149 0272-4979 1464-3642 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/30419 |
identifier_str_mv |
Buffa, Annalisa; Garau, Eduardo Mario; Refinable spaces and local approximation estimates for hierarchical splines; Oxford University Press; Ima Journal Of Numerical Analysis; 37; 3; 7-2017; 1125-1149 0272-4979 1464-3642 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drw035 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/37/3/1125/2670017?redirectedFrom=fulltext |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613062198296576 |
score |
13.070432 |