Refinable spaces and local approximation estimates for hierarchical splines
- Autores
- Buffa, Annalisa; Garau, Eduardo Mario
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms.
Fil: Buffa, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Matematica Applicata e Tecnologie Informatiche; Italia
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Adaptivity in Isogeometric Analysis
Hierarchical Splines
Quasi-Interpolation
Local Refinement - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30419
Ver los metadatos del registro completo
| id |
CONICETDig_36435d3b9b5c50da9d6b22a6fef57040 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30419 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Refinable spaces and local approximation estimates for hierarchical splinesBuffa, AnnalisaGarau, Eduardo MarioAdaptivity in Isogeometric AnalysisHierarchical SplinesQuasi-InterpolationLocal Refinementhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms.Fil: Buffa, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Matematica Applicata e Tecnologie Informatiche; ItaliaFil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaOxford University Press2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30419Buffa, Annalisa; Garau, Eduardo Mario; Refinable spaces and local approximation estimates for hierarchical splines; Oxford University Press; Ima Journal Of Numerical Analysis; 37; 3; 7-2017; 1125-11490272-49791464-3642CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drw035info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/37/3/1125/2670017?redirectedFrom=fulltextinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:22Zoai:ri.conicet.gov.ar:11336/30419instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:22.836CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Refinable spaces and local approximation estimates for hierarchical splines |
| title |
Refinable spaces and local approximation estimates for hierarchical splines |
| spellingShingle |
Refinable spaces and local approximation estimates for hierarchical splines Buffa, Annalisa Adaptivity in Isogeometric Analysis Hierarchical Splines Quasi-Interpolation Local Refinement |
| title_short |
Refinable spaces and local approximation estimates for hierarchical splines |
| title_full |
Refinable spaces and local approximation estimates for hierarchical splines |
| title_fullStr |
Refinable spaces and local approximation estimates for hierarchical splines |
| title_full_unstemmed |
Refinable spaces and local approximation estimates for hierarchical splines |
| title_sort |
Refinable spaces and local approximation estimates for hierarchical splines |
| dc.creator.none.fl_str_mv |
Buffa, Annalisa Garau, Eduardo Mario |
| author |
Buffa, Annalisa |
| author_facet |
Buffa, Annalisa Garau, Eduardo Mario |
| author_role |
author |
| author2 |
Garau, Eduardo Mario |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Adaptivity in Isogeometric Analysis Hierarchical Splines Quasi-Interpolation Local Refinement |
| topic |
Adaptivity in Isogeometric Analysis Hierarchical Splines Quasi-Interpolation Local Refinement |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms. Fil: Buffa, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Matematica Applicata e Tecnologie Informatiche; Italia Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
| description |
We study the local approximation properties in hierarchical spline spaces through multiscale quasi-interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical spline space (Vuong et al., 2011) which still satisfies the essential properties of the full space. The B-spline basis of such a subspace can be constructed using parent-children relations only, making it well adapted to local refinement algorithms. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30419 Buffa, Annalisa; Garau, Eduardo Mario; Refinable spaces and local approximation estimates for hierarchical splines; Oxford University Press; Ima Journal Of Numerical Analysis; 37; 3; 7-2017; 1125-1149 0272-4979 1464-3642 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/30419 |
| identifier_str_mv |
Buffa, Annalisa; Garau, Eduardo Mario; Refinable spaces and local approximation estimates for hierarchical splines; Oxford University Press; Ima Journal Of Numerical Analysis; 37; 3; 7-2017; 1125-1149 0272-4979 1464-3642 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drw035 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/37/3/1125/2670017?redirectedFrom=fulltext |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781230331199488 |
| score |
12.982451 |