Nonlinear Chebyshev approximation to set-valued functions
- Autores
- Cuenya, Hector Hugo; Levis, Fabián Eduardo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we give a characterization of best Chebyshev approximation to set-valued functions from a family of continuous functions with the weak betweeness property. As a consequence, we obtain a characterization of Kolmogorov type for best simultaneous approximation to an infinity set of functions. We introduce the concept of a set-sun and give a characterization of it. In addition, we prove a property of Amir–Ziegler type for a family of real functions and we get a characterization of best simultaneous approximation to two functions.
Fil: Cuenya, Hector Hugo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
CHEBYSHEV APPROXIMATION
SET-VALUED FUNCTION
WEAK BETWEENESS PROPERTY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/179846
Ver los metadatos del registro completo
id |
CONICETDig_7589630c9c086855ee65fddd6264af33 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/179846 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonlinear Chebyshev approximation to set-valued functionsCuenya, Hector HugoLevis, Fabián EduardoCHEBYSHEV APPROXIMATIONSET-VALUED FUNCTIONWEAK BETWEENESS PROPERTYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we give a characterization of best Chebyshev approximation to set-valued functions from a family of continuous functions with the weak betweeness property. As a consequence, we obtain a characterization of Kolmogorov type for best simultaneous approximation to an infinity set of functions. We introduce the concept of a set-sun and give a characterization of it. In addition, we prove a property of Amir–Ziegler type for a family of real functions and we get a characterization of best simultaneous approximation to two functions.Fil: Cuenya, Hector Hugo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaTaylor & Francis Ltd2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/179846Cuenya, Hector Hugo; Levis, Fabián Eduardo; Nonlinear Chebyshev approximation to set-valued functions; Taylor & Francis Ltd; Optimization; 65; 8; 8-2016; 1519-15290233-1934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/02331934.2016.1163554info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:36Zoai:ri.conicet.gov.ar:11336/179846instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:37.052CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonlinear Chebyshev approximation to set-valued functions |
title |
Nonlinear Chebyshev approximation to set-valued functions |
spellingShingle |
Nonlinear Chebyshev approximation to set-valued functions Cuenya, Hector Hugo CHEBYSHEV APPROXIMATION SET-VALUED FUNCTION WEAK BETWEENESS PROPERTY |
title_short |
Nonlinear Chebyshev approximation to set-valued functions |
title_full |
Nonlinear Chebyshev approximation to set-valued functions |
title_fullStr |
Nonlinear Chebyshev approximation to set-valued functions |
title_full_unstemmed |
Nonlinear Chebyshev approximation to set-valued functions |
title_sort |
Nonlinear Chebyshev approximation to set-valued functions |
dc.creator.none.fl_str_mv |
Cuenya, Hector Hugo Levis, Fabián Eduardo |
author |
Cuenya, Hector Hugo |
author_facet |
Cuenya, Hector Hugo Levis, Fabián Eduardo |
author_role |
author |
author2 |
Levis, Fabián Eduardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
CHEBYSHEV APPROXIMATION SET-VALUED FUNCTION WEAK BETWEENESS PROPERTY |
topic |
CHEBYSHEV APPROXIMATION SET-VALUED FUNCTION WEAK BETWEENESS PROPERTY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we give a characterization of best Chebyshev approximation to set-valued functions from a family of continuous functions with the weak betweeness property. As a consequence, we obtain a characterization of Kolmogorov type for best simultaneous approximation to an infinity set of functions. We introduce the concept of a set-sun and give a characterization of it. In addition, we prove a property of Amir–Ziegler type for a family of real functions and we get a characterization of best simultaneous approximation to two functions. Fil: Cuenya, Hector Hugo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
description |
In this paper, we give a characterization of best Chebyshev approximation to set-valued functions from a family of continuous functions with the weak betweeness property. As a consequence, we obtain a characterization of Kolmogorov type for best simultaneous approximation to an infinity set of functions. We introduce the concept of a set-sun and give a characterization of it. In addition, we prove a property of Amir–Ziegler type for a family of real functions and we get a characterization of best simultaneous approximation to two functions. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/179846 Cuenya, Hector Hugo; Levis, Fabián Eduardo; Nonlinear Chebyshev approximation to set-valued functions; Taylor & Francis Ltd; Optimization; 65; 8; 8-2016; 1519-1529 0233-1934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/179846 |
identifier_str_mv |
Cuenya, Hector Hugo; Levis, Fabián Eduardo; Nonlinear Chebyshev approximation to set-valued functions; Taylor & Francis Ltd; Optimization; 65; 8; 8-2016; 1519-1529 0233-1934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/02331934.2016.1163554 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613534707613696 |
score |
13.070432 |