Nonlinear Chebyshev approximation to set-valued functions

Autores
Cuenya, Hector Hugo; Levis, Fabián Eduardo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we give a characterization of best Chebyshev approximation to set-valued functions from a family of continuous functions with the weak betweeness property. As a consequence, we obtain a characterization of Kolmogorov type for best simultaneous approximation to an infinity set of functions. We introduce the concept of a set-sun and give a characterization of it. In addition, we prove a property of Amir–Ziegler type for a family of real functions and we get a characterization of best simultaneous approximation to two functions.
Fil: Cuenya, Hector Hugo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Materia
CHEBYSHEV APPROXIMATION
SET-VALUED FUNCTION
WEAK BETWEENESS PROPERTY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/179846

id CONICETDig_7589630c9c086855ee65fddd6264af33
oai_identifier_str oai:ri.conicet.gov.ar:11336/179846
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonlinear Chebyshev approximation to set-valued functionsCuenya, Hector HugoLevis, Fabián EduardoCHEBYSHEV APPROXIMATIONSET-VALUED FUNCTIONWEAK BETWEENESS PROPERTYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we give a characterization of best Chebyshev approximation to set-valued functions from a family of continuous functions with the weak betweeness property. As a consequence, we obtain a characterization of Kolmogorov type for best simultaneous approximation to an infinity set of functions. We introduce the concept of a set-sun and give a characterization of it. In addition, we prove a property of Amir–Ziegler type for a family of real functions and we get a characterization of best simultaneous approximation to two functions.Fil: Cuenya, Hector Hugo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaTaylor & Francis Ltd2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/179846Cuenya, Hector Hugo; Levis, Fabián Eduardo; Nonlinear Chebyshev approximation to set-valued functions; Taylor & Francis Ltd; Optimization; 65; 8; 8-2016; 1519-15290233-1934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/02331934.2016.1163554info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:36Zoai:ri.conicet.gov.ar:11336/179846instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:37.052CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonlinear Chebyshev approximation to set-valued functions
title Nonlinear Chebyshev approximation to set-valued functions
spellingShingle Nonlinear Chebyshev approximation to set-valued functions
Cuenya, Hector Hugo
CHEBYSHEV APPROXIMATION
SET-VALUED FUNCTION
WEAK BETWEENESS PROPERTY
title_short Nonlinear Chebyshev approximation to set-valued functions
title_full Nonlinear Chebyshev approximation to set-valued functions
title_fullStr Nonlinear Chebyshev approximation to set-valued functions
title_full_unstemmed Nonlinear Chebyshev approximation to set-valued functions
title_sort Nonlinear Chebyshev approximation to set-valued functions
dc.creator.none.fl_str_mv Cuenya, Hector Hugo
Levis, Fabián Eduardo
author Cuenya, Hector Hugo
author_facet Cuenya, Hector Hugo
Levis, Fabián Eduardo
author_role author
author2 Levis, Fabián Eduardo
author2_role author
dc.subject.none.fl_str_mv CHEBYSHEV APPROXIMATION
SET-VALUED FUNCTION
WEAK BETWEENESS PROPERTY
topic CHEBYSHEV APPROXIMATION
SET-VALUED FUNCTION
WEAK BETWEENESS PROPERTY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we give a characterization of best Chebyshev approximation to set-valued functions from a family of continuous functions with the weak betweeness property. As a consequence, we obtain a characterization of Kolmogorov type for best simultaneous approximation to an infinity set of functions. We introduce the concept of a set-sun and give a characterization of it. In addition, we prove a property of Amir–Ziegler type for a family of real functions and we get a characterization of best simultaneous approximation to two functions.
Fil: Cuenya, Hector Hugo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
description In this paper, we give a characterization of best Chebyshev approximation to set-valued functions from a family of continuous functions with the weak betweeness property. As a consequence, we obtain a characterization of Kolmogorov type for best simultaneous approximation to an infinity set of functions. We introduce the concept of a set-sun and give a characterization of it. In addition, we prove a property of Amir–Ziegler type for a family of real functions and we get a characterization of best simultaneous approximation to two functions.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/179846
Cuenya, Hector Hugo; Levis, Fabián Eduardo; Nonlinear Chebyshev approximation to set-valued functions; Taylor & Francis Ltd; Optimization; 65; 8; 8-2016; 1519-1529
0233-1934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/179846
identifier_str_mv Cuenya, Hector Hugo; Levis, Fabián Eduardo; Nonlinear Chebyshev approximation to set-valued functions; Taylor & Francis Ltd; Optimization; 65; 8; 8-2016; 1519-1529
0233-1934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/02331934.2016.1163554
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613534707613696
score 13.070432