Accuracy of Lattice Translates of Several Multidimensional Refinable Functions

Autores
Cabrelli, C.; Heil, C.; Molter, U.
Año de publicación
1998
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λckf(Ax-k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x),...,fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)<pare exactly reproduced from linear combinations of translates off1,...,fralong the latticeΓ. In this paper, we determine the accuracypfrom the matricesck. Moreover, we determine explicitly the coefficientsyα,i(k) such thatxα=∑ri=1∑ k∈Γyα,i(k)fi(x+k). These coefficients are multivariate polynomialsyα,i(x) of degree α evaluated at lattice pointsk∈1. © 1998 Academic Press.
Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Approx. Theory 1998;95(1):5-52
Materia
Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00219045_v95_n1_p5_Cabrelli

id BDUBAFCEN_63a93cda93d542060382cf8d5bcd30ba
oai_identifier_str paperaa:paper_00219045_v95_n1_p5_Cabrelli
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Accuracy of Lattice Translates of Several Multidimensional Refinable FunctionsCabrelli, C.Heil, C.Molter, U.Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; waveletsComplex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λckf(Ax-k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x),...,fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)&lt;pare exactly reproduced from linear combinations of translates off1,...,fralong the latticeΓ. In this paper, we determine the accuracypfrom the matricesck. Moreover, we determine explicitly the coefficientsyα,i(k) such thatxα=∑ri=1∑ k∈Γyα,i(k)fi(x+k). These coefficients are multivariate polynomialsyα,i(x) of degree α evaluated at lattice pointsk∈1. © 1998 Academic Press.Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.1998info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_CabrelliJ. Approx. Theory 1998;95(1):5-52reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:51Zpaperaa:paper_00219045_v95_n1_p5_CabrelliInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:52.919Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
title Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
spellingShingle Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
Cabrelli, C.
Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets
title_short Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
title_full Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
title_fullStr Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
title_full_unstemmed Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
title_sort Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
dc.creator.none.fl_str_mv Cabrelli, C.
Heil, C.
Molter, U.
author Cabrelli, C.
author_facet Cabrelli, C.
Heil, C.
Molter, U.
author_role author
author2 Heil, C.
Molter, U.
author2_role author
author
dc.subject.none.fl_str_mv Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets
topic Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets
dc.description.none.fl_txt_mv Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λckf(Ax-k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x),...,fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)&lt;pare exactly reproduced from linear combinations of translates off1,...,fralong the latticeΓ. In this paper, we determine the accuracypfrom the matricesck. Moreover, we determine explicitly the coefficientsyα,i(k) such thatxα=∑ri=1∑ k∈Γyα,i(k)fi(x+k). These coefficients are multivariate polynomialsyα,i(x) of degree α evaluated at lattice pointsk∈1. © 1998 Academic Press.
Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λckf(Ax-k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x),...,fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)&lt;pare exactly reproduced from linear combinations of translates off1,...,fralong the latticeΓ. In this paper, we determine the accuracypfrom the matricesck. Moreover, we determine explicitly the coefficientsyα,i(k) such thatxα=∑ri=1∑ k∈Γyα,i(k)fi(x+k). These coefficients are multivariate polynomialsyα,i(x) of degree α evaluated at lattice pointsk∈1. © 1998 Academic Press.
publishDate 1998
dc.date.none.fl_str_mv 1998
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli
url http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Approx. Theory 1998;95(1):5-52
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618733303103488
score 13.070432