On convergence of subspaces generated by dilations of polynomials. An application to best local approximation
- Autores
- Levis, Fabián Eduardo; Ridolfi, Claudia Vanina
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the convergence of a net of subspaces generated by dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Z´o and Cuenya [Advanced Courses of Mathematical Analysis II (Granada, 2004), 193–213, World Scientific, 2007] on a general approach to the problems of best vector-valued approximation on small regions from a finite dimensional subspace of polynomials.
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Ridolfi, Claudia Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
CONVERGENCE OF SUBSPACES
BEST LOCAL APPROXIMATION
ABSTRACT NORMS
HOMOGENEOUS DILATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/132021
Ver los metadatos del registro completo
id |
CONICETDig_f89f29facabd26ce8256e2fc6ac17432 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/132021 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On convergence of subspaces generated by dilations of polynomials. An application to best local approximationLevis, Fabián EduardoRidolfi, Claudia VaninaCONVERGENCE OF SUBSPACESBEST LOCAL APPROXIMATIONABSTRACT NORMSHOMOGENEOUS DILATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the convergence of a net of subspaces generated by dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Z´o and Cuenya [Advanced Courses of Mathematical Analysis II (Granada, 2004), 193–213, World Scientific, 2007] on a general approach to the problems of best vector-valued approximation on small regions from a finite dimensional subspace of polynomials.Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ridolfi, Claudia Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaUnión Matemática Argentina2020-02-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/132021Levis, Fabián Eduardo; Ridolfi, Claudia Vanina; On convergence of subspaces generated by dilations of polynomials. An application to best local approximation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 18-2-2020; 49-620041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v61n1a02info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v61n1a02info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:52Zoai:ri.conicet.gov.ar:11336/132021instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:52.588CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On convergence of subspaces generated by dilations of polynomials. An application to best local approximation |
title |
On convergence of subspaces generated by dilations of polynomials. An application to best local approximation |
spellingShingle |
On convergence of subspaces generated by dilations of polynomials. An application to best local approximation Levis, Fabián Eduardo CONVERGENCE OF SUBSPACES BEST LOCAL APPROXIMATION ABSTRACT NORMS HOMOGENEOUS DILATIONS |
title_short |
On convergence of subspaces generated by dilations of polynomials. An application to best local approximation |
title_full |
On convergence of subspaces generated by dilations of polynomials. An application to best local approximation |
title_fullStr |
On convergence of subspaces generated by dilations of polynomials. An application to best local approximation |
title_full_unstemmed |
On convergence of subspaces generated by dilations of polynomials. An application to best local approximation |
title_sort |
On convergence of subspaces generated by dilations of polynomials. An application to best local approximation |
dc.creator.none.fl_str_mv |
Levis, Fabián Eduardo Ridolfi, Claudia Vanina |
author |
Levis, Fabián Eduardo |
author_facet |
Levis, Fabián Eduardo Ridolfi, Claudia Vanina |
author_role |
author |
author2 |
Ridolfi, Claudia Vanina |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONVERGENCE OF SUBSPACES BEST LOCAL APPROXIMATION ABSTRACT NORMS HOMOGENEOUS DILATIONS |
topic |
CONVERGENCE OF SUBSPACES BEST LOCAL APPROXIMATION ABSTRACT NORMS HOMOGENEOUS DILATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the convergence of a net of subspaces generated by dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Z´o and Cuenya [Advanced Courses of Mathematical Analysis II (Granada, 2004), 193–213, World Scientific, 2007] on a general approach to the problems of best vector-valued approximation on small regions from a finite dimensional subspace of polynomials. Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Ridolfi, Claudia Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
We study the convergence of a net of subspaces generated by dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Z´o and Cuenya [Advanced Courses of Mathematical Analysis II (Granada, 2004), 193–213, World Scientific, 2007] on a general approach to the problems of best vector-valued approximation on small regions from a finite dimensional subspace of polynomials. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02-18 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/132021 Levis, Fabián Eduardo; Ridolfi, Claudia Vanina; On convergence of subspaces generated by dilations of polynomials. An application to best local approximation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 18-2-2020; 49-62 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/132021 |
identifier_str_mv |
Levis, Fabián Eduardo; Ridolfi, Claudia Vanina; On convergence of subspaces generated by dilations of polynomials. An application to best local approximation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 18-2-2020; 49-62 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v61n1a02 info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v61n1a02 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981203158761472 |
score |
12.48226 |