On convergence of subspaces generated by dilations of polynomials. An application to best local approximation

Autores
Levis, Fabián Eduardo; Ridolfi, Claudia Vanina
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the convergence of a net of subspaces generated by dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Z´o and Cuenya [Advanced Courses of Mathematical Analysis II (Granada, 2004), 193–213, World Scientific, 2007] on a general approach to the problems of best vector-valued approximation on small regions from a finite dimensional subspace of polynomials.
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Ridolfi, Claudia Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
CONVERGENCE OF SUBSPACES
BEST LOCAL APPROXIMATION
ABSTRACT NORMS
HOMOGENEOUS DILATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/132021

id CONICETDig_f89f29facabd26ce8256e2fc6ac17432
oai_identifier_str oai:ri.conicet.gov.ar:11336/132021
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On convergence of subspaces generated by dilations of polynomials. An application to best local approximationLevis, Fabián EduardoRidolfi, Claudia VaninaCONVERGENCE OF SUBSPACESBEST LOCAL APPROXIMATIONABSTRACT NORMSHOMOGENEOUS DILATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the convergence of a net of subspaces generated by dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Z´o and Cuenya [Advanced Courses of Mathematical Analysis II (Granada, 2004), 193–213, World Scientific, 2007] on a general approach to the problems of best vector-valued approximation on small regions from a finite dimensional subspace of polynomials.Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ridolfi, Claudia Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaUnión Matemática Argentina2020-02-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/132021Levis, Fabián Eduardo; Ridolfi, Claudia Vanina; On convergence of subspaces generated by dilations of polynomials. An application to best local approximation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 18-2-2020; 49-620041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v61n1a02info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v61n1a02info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:52Zoai:ri.conicet.gov.ar:11336/132021instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:52.588CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On convergence of subspaces generated by dilations of polynomials. An application to best local approximation
title On convergence of subspaces generated by dilations of polynomials. An application to best local approximation
spellingShingle On convergence of subspaces generated by dilations of polynomials. An application to best local approximation
Levis, Fabián Eduardo
CONVERGENCE OF SUBSPACES
BEST LOCAL APPROXIMATION
ABSTRACT NORMS
HOMOGENEOUS DILATIONS
title_short On convergence of subspaces generated by dilations of polynomials. An application to best local approximation
title_full On convergence of subspaces generated by dilations of polynomials. An application to best local approximation
title_fullStr On convergence of subspaces generated by dilations of polynomials. An application to best local approximation
title_full_unstemmed On convergence of subspaces generated by dilations of polynomials. An application to best local approximation
title_sort On convergence of subspaces generated by dilations of polynomials. An application to best local approximation
dc.creator.none.fl_str_mv Levis, Fabián Eduardo
Ridolfi, Claudia Vanina
author Levis, Fabián Eduardo
author_facet Levis, Fabián Eduardo
Ridolfi, Claudia Vanina
author_role author
author2 Ridolfi, Claudia Vanina
author2_role author
dc.subject.none.fl_str_mv CONVERGENCE OF SUBSPACES
BEST LOCAL APPROXIMATION
ABSTRACT NORMS
HOMOGENEOUS DILATIONS
topic CONVERGENCE OF SUBSPACES
BEST LOCAL APPROXIMATION
ABSTRACT NORMS
HOMOGENEOUS DILATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the convergence of a net of subspaces generated by dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Z´o and Cuenya [Advanced Courses of Mathematical Analysis II (Granada, 2004), 193–213, World Scientific, 2007] on a general approach to the problems of best vector-valued approximation on small regions from a finite dimensional subspace of polynomials.
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Ridolfi, Claudia Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description We study the convergence of a net of subspaces generated by dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Z´o and Cuenya [Advanced Courses of Mathematical Analysis II (Granada, 2004), 193–213, World Scientific, 2007] on a general approach to the problems of best vector-valued approximation on small regions from a finite dimensional subspace of polynomials.
publishDate 2020
dc.date.none.fl_str_mv 2020-02-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/132021
Levis, Fabián Eduardo; Ridolfi, Claudia Vanina; On convergence of subspaces generated by dilations of polynomials. An application to best local approximation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 18-2-2020; 49-62
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/132021
identifier_str_mv Levis, Fabián Eduardo; Ridolfi, Claudia Vanina; On convergence of subspaces generated by dilations of polynomials. An application to best local approximation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 18-2-2020; 49-62
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v61n1a02
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v61n1a02
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981203158761472
score 12.48226