Estimation of diffusion time with the Shannon entropy approach

Autores
Cincotta, Pablo Miguel; Giordano, Claudia Marcela
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The present work revisits and improves the Shannon entropy approach when applied to the estimation ofan instability timescale for chaotic diffusion in multidimensional Hamiltonian systems. This formulation hasalready been proved efficient in deriving the diffusion timescale in 4D symplectic maps and planetary systems,when the diffusion proceeds along the chaotic layers of the resonance’s web. Herein the technique is used toestimate the diffusion rate in the Arnold model, i.e., of the motion along the homoclinic tangle of the so-calledguiding resonance for several values of the perturbation parameter such that the overlap of resonances is almostnegligible. Thus differently from the previous studies, the focus is fixed on deriving a local timescale related tothe speed of an Arnold diffusion-like process. The comparison of the current estimates with determinations ofthe diffusion time obtained by straightforward numerical integration of the equations of motion reveals a quitegood agreement.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Materia
CHAOTIC DIFFUSION
DIFUSSION TIME
ANALYTICAL AND NUMERICAL METHODS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/232738

id CONICETDig_256f8c207bdefaadd7328c6310374e21
oai_identifier_str oai:ri.conicet.gov.ar:11336/232738
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Estimation of diffusion time with the Shannon entropy approachCincotta, Pablo MiguelGiordano, Claudia MarcelaCHAOTIC DIFFUSIONDIFUSSION TIMEANALYTICAL AND NUMERICAL METHODShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The present work revisits and improves the Shannon entropy approach when applied to the estimation ofan instability timescale for chaotic diffusion in multidimensional Hamiltonian systems. This formulation hasalready been proved efficient in deriving the diffusion timescale in 4D symplectic maps and planetary systems,when the diffusion proceeds along the chaotic layers of the resonance’s web. Herein the technique is used toestimate the diffusion rate in the Arnold model, i.e., of the motion along the homoclinic tangle of the so-calledguiding resonance for several values of the perturbation parameter such that the overlap of resonances is almostnegligible. Thus differently from the previous studies, the focus is fixed on deriving a local timescale related tothe speed of an Arnold diffusion-like process. The comparison of the current estimates with determinations ofthe diffusion time obtained by straightforward numerical integration of the equations of motion reveals a quitegood agreement.Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaAmerican Physical Society2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232738Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Estimation of diffusion time with the Shannon entropy approach; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 107; 6-2023; 64101-641101539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.107.064101info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.107.064101info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:21Zoai:ri.conicet.gov.ar:11336/232738instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:22.095CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Estimation of diffusion time with the Shannon entropy approach
title Estimation of diffusion time with the Shannon entropy approach
spellingShingle Estimation of diffusion time with the Shannon entropy approach
Cincotta, Pablo Miguel
CHAOTIC DIFFUSION
DIFUSSION TIME
ANALYTICAL AND NUMERICAL METHODS
title_short Estimation of diffusion time with the Shannon entropy approach
title_full Estimation of diffusion time with the Shannon entropy approach
title_fullStr Estimation of diffusion time with the Shannon entropy approach
title_full_unstemmed Estimation of diffusion time with the Shannon entropy approach
title_sort Estimation of diffusion time with the Shannon entropy approach
dc.creator.none.fl_str_mv Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author Cincotta, Pablo Miguel
author_facet Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author_role author
author2 Giordano, Claudia Marcela
author2_role author
dc.subject.none.fl_str_mv CHAOTIC DIFFUSION
DIFUSSION TIME
ANALYTICAL AND NUMERICAL METHODS
topic CHAOTIC DIFFUSION
DIFUSSION TIME
ANALYTICAL AND NUMERICAL METHODS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The present work revisits and improves the Shannon entropy approach when applied to the estimation ofan instability timescale for chaotic diffusion in multidimensional Hamiltonian systems. This formulation hasalready been proved efficient in deriving the diffusion timescale in 4D symplectic maps and planetary systems,when the diffusion proceeds along the chaotic layers of the resonance’s web. Herein the technique is used toestimate the diffusion rate in the Arnold model, i.e., of the motion along the homoclinic tangle of the so-calledguiding resonance for several values of the perturbation parameter such that the overlap of resonances is almostnegligible. Thus differently from the previous studies, the focus is fixed on deriving a local timescale related tothe speed of an Arnold diffusion-like process. The comparison of the current estimates with determinations ofthe diffusion time obtained by straightforward numerical integration of the equations of motion reveals a quitegood agreement.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
description The present work revisits and improves the Shannon entropy approach when applied to the estimation ofan instability timescale for chaotic diffusion in multidimensional Hamiltonian systems. This formulation hasalready been proved efficient in deriving the diffusion timescale in 4D symplectic maps and planetary systems,when the diffusion proceeds along the chaotic layers of the resonance’s web. Herein the technique is used toestimate the diffusion rate in the Arnold model, i.e., of the motion along the homoclinic tangle of the so-calledguiding resonance for several values of the perturbation parameter such that the overlap of resonances is almostnegligible. Thus differently from the previous studies, the focus is fixed on deriving a local timescale related tothe speed of an Arnold diffusion-like process. The comparison of the current estimates with determinations ofthe diffusion time obtained by straightforward numerical integration of the equations of motion reveals a quitegood agreement.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/232738
Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Estimation of diffusion time with the Shannon entropy approach; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 107; 6-2023; 64101-64110
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/232738
identifier_str_mv Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Estimation of diffusion time with the Shannon entropy approach; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 107; 6-2023; 64101-64110
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.107.064101
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.107.064101
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613783926865920
score 13.070432