Diffusion and Lyapunov timescales in the Arnold model
- Autores
- Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Shevchenko, Ivan
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present work, we focus on two dynamical timescales in the Arnold Hamiltonian model: the Lyapunov time and the diffusion time when the system is confined to the stochastic layer of its dominant resonance (guiding resonance). Following Chirikov's formulation, the model is revisited, and a discussion about the main assumptions behind the analytical estimates for the diffusion rate is given. On the other hand, and in line with Chirikov's ideas, theoretical estimations of the Lyapunov time are derived. Later on, three series of numerical experiments are presented for various sets of values of the model parameters, where both timescales are computed. Comparisons between the analytical estimates and the numerical determinations are provided whenever the parameters are not too large, and those cases are in fact in agreement. In particular, the case in which both parameters are equal is numerically investigated. Relationships between the diffusion time and the Lyapunov time are established, like an exponential law or a power law in the case of large values of the parameters.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Shevchenko, Ivan. Saint Petersburg State University; Rusia - Materia
-
CHAOTIC DIFFUSION
LYAPUNOV TIME
INSTABILITY TIME - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210884
Ver los metadatos del registro completo
id |
CONICETDig_5bc3b7a4653189cc359dc833bb261e90 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210884 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Diffusion and Lyapunov timescales in the Arnold modelCincotta, Pablo MiguelGiordano, Claudia MarcelaShevchenko, IvanCHAOTIC DIFFUSIONLYAPUNOV TIMEINSTABILITY TIMEhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the present work, we focus on two dynamical timescales in the Arnold Hamiltonian model: the Lyapunov time and the diffusion time when the system is confined to the stochastic layer of its dominant resonance (guiding resonance). Following Chirikov's formulation, the model is revisited, and a discussion about the main assumptions behind the analytical estimates for the diffusion rate is given. On the other hand, and in line with Chirikov's ideas, theoretical estimations of the Lyapunov time are derived. Later on, three series of numerical experiments are presented for various sets of values of the model parameters, where both timescales are computed. Comparisons between the analytical estimates and the numerical determinations are provided whenever the parameters are not too large, and those cases are in fact in agreement. In particular, the case in which both parameters are equal is numerically investigated. Relationships between the diffusion time and the Lyapunov time are established, like an exponential law or a power law in the case of large values of the parameters.Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Shevchenko, Ivan. Saint Petersburg State University; RusiaAmerican Physical Society2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210884Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Shevchenko, Ivan; Diffusion and Lyapunov timescales in the Arnold model; American Physical Society; Physical Review E; 106; 4; 10-2022; 1-152470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.106.044205info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.106.044205info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:43Zoai:ri.conicet.gov.ar:11336/210884instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:43.297CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Diffusion and Lyapunov timescales in the Arnold model |
title |
Diffusion and Lyapunov timescales in the Arnold model |
spellingShingle |
Diffusion and Lyapunov timescales in the Arnold model Cincotta, Pablo Miguel CHAOTIC DIFFUSION LYAPUNOV TIME INSTABILITY TIME |
title_short |
Diffusion and Lyapunov timescales in the Arnold model |
title_full |
Diffusion and Lyapunov timescales in the Arnold model |
title_fullStr |
Diffusion and Lyapunov timescales in the Arnold model |
title_full_unstemmed |
Diffusion and Lyapunov timescales in the Arnold model |
title_sort |
Diffusion and Lyapunov timescales in the Arnold model |
dc.creator.none.fl_str_mv |
Cincotta, Pablo Miguel Giordano, Claudia Marcela Shevchenko, Ivan |
author |
Cincotta, Pablo Miguel |
author_facet |
Cincotta, Pablo Miguel Giordano, Claudia Marcela Shevchenko, Ivan |
author_role |
author |
author2 |
Giordano, Claudia Marcela Shevchenko, Ivan |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CHAOTIC DIFFUSION LYAPUNOV TIME INSTABILITY TIME |
topic |
CHAOTIC DIFFUSION LYAPUNOV TIME INSTABILITY TIME |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the present work, we focus on two dynamical timescales in the Arnold Hamiltonian model: the Lyapunov time and the diffusion time when the system is confined to the stochastic layer of its dominant resonance (guiding resonance). Following Chirikov's formulation, the model is revisited, and a discussion about the main assumptions behind the analytical estimates for the diffusion rate is given. On the other hand, and in line with Chirikov's ideas, theoretical estimations of the Lyapunov time are derived. Later on, three series of numerical experiments are presented for various sets of values of the model parameters, where both timescales are computed. Comparisons between the analytical estimates and the numerical determinations are provided whenever the parameters are not too large, and those cases are in fact in agreement. In particular, the case in which both parameters are equal is numerically investigated. Relationships between the diffusion time and the Lyapunov time are established, like an exponential law or a power law in the case of large values of the parameters. Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Shevchenko, Ivan. Saint Petersburg State University; Rusia |
description |
In the present work, we focus on two dynamical timescales in the Arnold Hamiltonian model: the Lyapunov time and the diffusion time when the system is confined to the stochastic layer of its dominant resonance (guiding resonance). Following Chirikov's formulation, the model is revisited, and a discussion about the main assumptions behind the analytical estimates for the diffusion rate is given. On the other hand, and in line with Chirikov's ideas, theoretical estimations of the Lyapunov time are derived. Later on, three series of numerical experiments are presented for various sets of values of the model parameters, where both timescales are computed. Comparisons between the analytical estimates and the numerical determinations are provided whenever the parameters are not too large, and those cases are in fact in agreement. In particular, the case in which both parameters are equal is numerically investigated. Relationships between the diffusion time and the Lyapunov time are established, like an exponential law or a power law in the case of large values of the parameters. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210884 Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Shevchenko, Ivan; Diffusion and Lyapunov timescales in the Arnold model; American Physical Society; Physical Review E; 106; 4; 10-2022; 1-15 2470-0045 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210884 |
identifier_str_mv |
Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Shevchenko, Ivan; Diffusion and Lyapunov timescales in the Arnold model; American Physical Society; Physical Review E; 106; 4; 10-2022; 1-15 2470-0045 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.106.044205 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.106.044205 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614206881529856 |
score |
13.070432 |