fMRI spectral signatures of sleep
- Autores
- Song, Chen; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; Tononi, Giulio
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Sleep can be distinguished from wake by changes in brain electrical activity, typically assessed using electroencephalography (EEG). The hallmark of nonrapid-eye-movement (NREM) sleep is the shift from high-frequency, low-amplitude wake EEG to low-frequency, high-amplitude sleep EEG dominated by spindles and slow waves. Here we identified signatures of sleep in brain hemodynamic activity, using simultaneous functional MRI (fMRI) and EEG. We found that, at the transition from wake to sleep, fMRI blood oxygen level–dependent (BOLD) activity evolved from a mixed-frequency pattern to one dominated by two distinct oscillations: a low-frequency (<0.1 Hz) oscillation prominent in light sleep and correlated with the occurrence of spindles, and a high-frequency oscillation (>0.1 Hz) prominent in deep sleep and correlated with the occurrence of slow waves. The two oscillations were both detectable across the brain but exhibited distinct spatiotemporal patterns. During the falling-asleep process, the low-frequency oscillation first appeared in the thalamus, then the posterior cortex, and lastly the frontal cortex, while the high-frequency oscillation first appeared in the midbrain, then the frontal cortex, and lastly the posterior cortex. During the waking-up process, both oscillations disappeared first from the thalamus, then the frontal cortex, and lastly the posterior cortex. The BOLD oscillations provide local signatures of spindle and slow wave activity. They may be employed to monitor the regional occurrence of sleep or wakefulness, track which regions are the first to fall asleep or wake up at the wake–sleep transitions, and investigate local homeostatic sleep processes.
Fil: Song, Chen. University of Wisconsin; Estados Unidos. Cardiff University; Reino Unido
Fil: Boly, Melanie. University of Wisconsin; Estados Unidos
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad Adolfo Ibañez; Chile
Fil: Laufs, Helmut. University Hospital Schleswig Holstein; Alemania. Goethe Universitat Frankfurt; Alemania
Fil: Tononi, Giulio. University of Wisconsin; Estados Unidos - Materia
-
BOLD OSCILLATIONS
FMRI-EEG
SLEEP
WAKE–SLEEP TRANSITIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216997
Ver los metadatos del registro completo
id |
CONICETDig_25344c8f5cf046e53ba3139e0dca6341 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216997 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
fMRI spectral signatures of sleepSong, ChenBoly, MelanieTagliazucchi, Enzo RodolfoLaufs, HelmutTononi, GiulioBOLD OSCILLATIONSFMRI-EEGSLEEPWAKE–SLEEP TRANSITIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Sleep can be distinguished from wake by changes in brain electrical activity, typically assessed using electroencephalography (EEG). The hallmark of nonrapid-eye-movement (NREM) sleep is the shift from high-frequency, low-amplitude wake EEG to low-frequency, high-amplitude sleep EEG dominated by spindles and slow waves. Here we identified signatures of sleep in brain hemodynamic activity, using simultaneous functional MRI (fMRI) and EEG. We found that, at the transition from wake to sleep, fMRI blood oxygen level–dependent (BOLD) activity evolved from a mixed-frequency pattern to one dominated by two distinct oscillations: a low-frequency (<0.1 Hz) oscillation prominent in light sleep and correlated with the occurrence of spindles, and a high-frequency oscillation (>0.1 Hz) prominent in deep sleep and correlated with the occurrence of slow waves. The two oscillations were both detectable across the brain but exhibited distinct spatiotemporal patterns. During the falling-asleep process, the low-frequency oscillation first appeared in the thalamus, then the posterior cortex, and lastly the frontal cortex, while the high-frequency oscillation first appeared in the midbrain, then the frontal cortex, and lastly the posterior cortex. During the waking-up process, both oscillations disappeared first from the thalamus, then the frontal cortex, and lastly the posterior cortex. The BOLD oscillations provide local signatures of spindle and slow wave activity. They may be employed to monitor the regional occurrence of sleep or wakefulness, track which regions are the first to fall asleep or wake up at the wake–sleep transitions, and investigate local homeostatic sleep processes.Fil: Song, Chen. University of Wisconsin; Estados Unidos. Cardiff University; Reino UnidoFil: Boly, Melanie. University of Wisconsin; Estados UnidosFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad Adolfo Ibañez; ChileFil: Laufs, Helmut. University Hospital Schleswig Holstein; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Tononi, Giulio. University of Wisconsin; Estados UnidosNational Academy of Sciences2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216997Song, Chen; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; Tononi, Giulio; fMRI spectral signatures of sleep; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 119; 30; 7-2022; 1-120027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/doi/full/10.1073/pnas.2016732119info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2016732119info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:26Zoai:ri.conicet.gov.ar:11336/216997instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:26.731CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
fMRI spectral signatures of sleep |
title |
fMRI spectral signatures of sleep |
spellingShingle |
fMRI spectral signatures of sleep Song, Chen BOLD OSCILLATIONS FMRI-EEG SLEEP WAKE–SLEEP TRANSITIONS |
title_short |
fMRI spectral signatures of sleep |
title_full |
fMRI spectral signatures of sleep |
title_fullStr |
fMRI spectral signatures of sleep |
title_full_unstemmed |
fMRI spectral signatures of sleep |
title_sort |
fMRI spectral signatures of sleep |
dc.creator.none.fl_str_mv |
Song, Chen Boly, Melanie Tagliazucchi, Enzo Rodolfo Laufs, Helmut Tononi, Giulio |
author |
Song, Chen |
author_facet |
Song, Chen Boly, Melanie Tagliazucchi, Enzo Rodolfo Laufs, Helmut Tononi, Giulio |
author_role |
author |
author2 |
Boly, Melanie Tagliazucchi, Enzo Rodolfo Laufs, Helmut Tononi, Giulio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BOLD OSCILLATIONS FMRI-EEG SLEEP WAKE–SLEEP TRANSITIONS |
topic |
BOLD OSCILLATIONS FMRI-EEG SLEEP WAKE–SLEEP TRANSITIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Sleep can be distinguished from wake by changes in brain electrical activity, typically assessed using electroencephalography (EEG). The hallmark of nonrapid-eye-movement (NREM) sleep is the shift from high-frequency, low-amplitude wake EEG to low-frequency, high-amplitude sleep EEG dominated by spindles and slow waves. Here we identified signatures of sleep in brain hemodynamic activity, using simultaneous functional MRI (fMRI) and EEG. We found that, at the transition from wake to sleep, fMRI blood oxygen level–dependent (BOLD) activity evolved from a mixed-frequency pattern to one dominated by two distinct oscillations: a low-frequency (<0.1 Hz) oscillation prominent in light sleep and correlated with the occurrence of spindles, and a high-frequency oscillation (>0.1 Hz) prominent in deep sleep and correlated with the occurrence of slow waves. The two oscillations were both detectable across the brain but exhibited distinct spatiotemporal patterns. During the falling-asleep process, the low-frequency oscillation first appeared in the thalamus, then the posterior cortex, and lastly the frontal cortex, while the high-frequency oscillation first appeared in the midbrain, then the frontal cortex, and lastly the posterior cortex. During the waking-up process, both oscillations disappeared first from the thalamus, then the frontal cortex, and lastly the posterior cortex. The BOLD oscillations provide local signatures of spindle and slow wave activity. They may be employed to monitor the regional occurrence of sleep or wakefulness, track which regions are the first to fall asleep or wake up at the wake–sleep transitions, and investigate local homeostatic sleep processes. Fil: Song, Chen. University of Wisconsin; Estados Unidos. Cardiff University; Reino Unido Fil: Boly, Melanie. University of Wisconsin; Estados Unidos Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad Adolfo Ibañez; Chile Fil: Laufs, Helmut. University Hospital Schleswig Holstein; Alemania. Goethe Universitat Frankfurt; Alemania Fil: Tononi, Giulio. University of Wisconsin; Estados Unidos |
description |
Sleep can be distinguished from wake by changes in brain electrical activity, typically assessed using electroencephalography (EEG). The hallmark of nonrapid-eye-movement (NREM) sleep is the shift from high-frequency, low-amplitude wake EEG to low-frequency, high-amplitude sleep EEG dominated by spindles and slow waves. Here we identified signatures of sleep in brain hemodynamic activity, using simultaneous functional MRI (fMRI) and EEG. We found that, at the transition from wake to sleep, fMRI blood oxygen level–dependent (BOLD) activity evolved from a mixed-frequency pattern to one dominated by two distinct oscillations: a low-frequency (<0.1 Hz) oscillation prominent in light sleep and correlated with the occurrence of spindles, and a high-frequency oscillation (>0.1 Hz) prominent in deep sleep and correlated with the occurrence of slow waves. The two oscillations were both detectable across the brain but exhibited distinct spatiotemporal patterns. During the falling-asleep process, the low-frequency oscillation first appeared in the thalamus, then the posterior cortex, and lastly the frontal cortex, while the high-frequency oscillation first appeared in the midbrain, then the frontal cortex, and lastly the posterior cortex. During the waking-up process, both oscillations disappeared first from the thalamus, then the frontal cortex, and lastly the posterior cortex. The BOLD oscillations provide local signatures of spindle and slow wave activity. They may be employed to monitor the regional occurrence of sleep or wakefulness, track which regions are the first to fall asleep or wake up at the wake–sleep transitions, and investigate local homeostatic sleep processes. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216997 Song, Chen; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; Tononi, Giulio; fMRI spectral signatures of sleep; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 119; 30; 7-2022; 1-12 0027-8424 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/216997 |
identifier_str_mv |
Song, Chen; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; Tononi, Giulio; fMRI spectral signatures of sleep; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 119; 30; 7-2022; 1-12 0027-8424 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/doi/full/10.1073/pnas.2016732119 info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2016732119 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
National Academy of Sciences |
publisher.none.fl_str_mv |
National Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980398779334656 |
score |
13.004268 |