Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports

Autores
Alviso, Dario; Sciamarella, Denisse; Gronskis, Alejandro; Artana, Guillermo Osvaldo
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work considers the two-dimensional flow field of an incompressible viscous fluid in a parallel-sided channel. In our study, one of the walls is fixed whereas the other one is elastically mounted, and sustained oscillations are induced by the fluid motion. The flow that forces the wall movement is produced as a consequence that one of the ends of the channel is pressurized, whereas the opposite end is at atmospheric pressure. The study aims at reducing the complexity of models for several physiological systems in which fluid-structure interaction produces large deformation of the wall. We report the experimental results of the observed self-sustained oscillations. These oscillations occur at frequencies close to the natural frequency of the system. The vertical motion is accompanied by a slight trend to rotate the moving mass at intervals when the gap height is quite narrow. We propose a simplified analytical model to explore the conditions under which this motion is possible. The analytical approach considers asymptotic solutions of the Navier-Stokes equation with a perturbation technique. The comparison between the experimental pressure measured at the midlength of the channel and the analytical result issued with a model neglecting viscous effects shows a very good agreement. Also, the rotating trend of the moving wall can be explained in terms of the quadratic dependence of the pressure with the streamwise coordinate that is predicted by this simplified model.
Fil: Alviso, Dario. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; Francia
Fil: Gronskis, Alejandro. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
FLOW INDUCED SELF-OSCILLATION
FLUID-STRUCTURE INTERACTION
STRAIGHT CHANNEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/197626

id CONICETDig_20dd67e41a9ff85ea4ad90c0a5449e2a
oai_identifier_str oai:ri.conicet.gov.ar:11336/197626
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supportsAlviso, DarioSciamarella, DenisseGronskis, AlejandroArtana, Guillermo OsvaldoFLOW INDUCED SELF-OSCILLATIONFLUID-STRUCTURE INTERACTIONSTRAIGHT CHANNELhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This work considers the two-dimensional flow field of an incompressible viscous fluid in a parallel-sided channel. In our study, one of the walls is fixed whereas the other one is elastically mounted, and sustained oscillations are induced by the fluid motion. The flow that forces the wall movement is produced as a consequence that one of the ends of the channel is pressurized, whereas the opposite end is at atmospheric pressure. The study aims at reducing the complexity of models for several physiological systems in which fluid-structure interaction produces large deformation of the wall. We report the experimental results of the observed self-sustained oscillations. These oscillations occur at frequencies close to the natural frequency of the system. The vertical motion is accompanied by a slight trend to rotate the moving mass at intervals when the gap height is quite narrow. We propose a simplified analytical model to explore the conditions under which this motion is possible. The analytical approach considers asymptotic solutions of the Navier-Stokes equation with a perturbation technique. The comparison between the experimental pressure measured at the midlength of the channel and the analytical result issued with a model neglecting viscous effects shows a very good agreement. Also, the rotating trend of the moving wall can be explained in terms of the quadratic dependence of the pressure with the streamwise coordinate that is predicted by this simplified model.Fil: Alviso, Dario. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; FranciaFil: Gronskis, Alejandro. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; ArgentinaFil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/197626Alviso, Dario; Sciamarella, Denisse; Gronskis, Alejandro; Artana, Guillermo Osvaldo; Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports; IOP Publishing; Bioinspiration & Biomimetics; 17; 9-2022; 1-111748-3182CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1748-3190/ac8c0finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:59Zoai:ri.conicet.gov.ar:11336/197626instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:59.984CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports
title Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports
spellingShingle Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports
Alviso, Dario
FLOW INDUCED SELF-OSCILLATION
FLUID-STRUCTURE INTERACTION
STRAIGHT CHANNEL
title_short Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports
title_full Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports
title_fullStr Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports
title_full_unstemmed Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports
title_sort Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports
dc.creator.none.fl_str_mv Alviso, Dario
Sciamarella, Denisse
Gronskis, Alejandro
Artana, Guillermo Osvaldo
author Alviso, Dario
author_facet Alviso, Dario
Sciamarella, Denisse
Gronskis, Alejandro
Artana, Guillermo Osvaldo
author_role author
author2 Sciamarella, Denisse
Gronskis, Alejandro
Artana, Guillermo Osvaldo
author2_role author
author
author
dc.subject.none.fl_str_mv FLOW INDUCED SELF-OSCILLATION
FLUID-STRUCTURE INTERACTION
STRAIGHT CHANNEL
topic FLOW INDUCED SELF-OSCILLATION
FLUID-STRUCTURE INTERACTION
STRAIGHT CHANNEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work considers the two-dimensional flow field of an incompressible viscous fluid in a parallel-sided channel. In our study, one of the walls is fixed whereas the other one is elastically mounted, and sustained oscillations are induced by the fluid motion. The flow that forces the wall movement is produced as a consequence that one of the ends of the channel is pressurized, whereas the opposite end is at atmospheric pressure. The study aims at reducing the complexity of models for several physiological systems in which fluid-structure interaction produces large deformation of the wall. We report the experimental results of the observed self-sustained oscillations. These oscillations occur at frequencies close to the natural frequency of the system. The vertical motion is accompanied by a slight trend to rotate the moving mass at intervals when the gap height is quite narrow. We propose a simplified analytical model to explore the conditions under which this motion is possible. The analytical approach considers asymptotic solutions of the Navier-Stokes equation with a perturbation technique. The comparison between the experimental pressure measured at the midlength of the channel and the analytical result issued with a model neglecting viscous effects shows a very good agreement. Also, the rotating trend of the moving wall can be explained in terms of the quadratic dependence of the pressure with the streamwise coordinate that is predicted by this simplified model.
Fil: Alviso, Dario. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; Francia
Fil: Gronskis, Alejandro. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description This work considers the two-dimensional flow field of an incompressible viscous fluid in a parallel-sided channel. In our study, one of the walls is fixed whereas the other one is elastically mounted, and sustained oscillations are induced by the fluid motion. The flow that forces the wall movement is produced as a consequence that one of the ends of the channel is pressurized, whereas the opposite end is at atmospheric pressure. The study aims at reducing the complexity of models for several physiological systems in which fluid-structure interaction produces large deformation of the wall. We report the experimental results of the observed self-sustained oscillations. These oscillations occur at frequencies close to the natural frequency of the system. The vertical motion is accompanied by a slight trend to rotate the moving mass at intervals when the gap height is quite narrow. We propose a simplified analytical model to explore the conditions under which this motion is possible. The analytical approach considers asymptotic solutions of the Navier-Stokes equation with a perturbation technique. The comparison between the experimental pressure measured at the midlength of the channel and the analytical result issued with a model neglecting viscous effects shows a very good agreement. Also, the rotating trend of the moving wall can be explained in terms of the quadratic dependence of the pressure with the streamwise coordinate that is predicted by this simplified model.
publishDate 2022
dc.date.none.fl_str_mv 2022-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/197626
Alviso, Dario; Sciamarella, Denisse; Gronskis, Alejandro; Artana, Guillermo Osvaldo; Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports; IOP Publishing; Bioinspiration & Biomimetics; 17; 9-2022; 1-11
1748-3182
CONICET Digital
CONICET
url http://hdl.handle.net/11336/197626
identifier_str_mv Alviso, Dario; Sciamarella, Denisse; Gronskis, Alejandro; Artana, Guillermo Osvaldo; Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports; IOP Publishing; Bioinspiration & Biomimetics; 17; 9-2022; 1-11
1748-3182
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-3190/ac8c0f
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613819842691072
score 13.070432