Real roots of univariate polynomials and straight line programs
- Autores
- Perrucci, D.; Sabia, J.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a new proof of the NP-hardness of deciding the existence of real roots of an integer univariate polynomial encoded by a straight line program based on certain properties of the Tchebychev polynomials. These techniques allow us to prove some new NP-hardness results related to real root approximation for polynomials given by straight line programs. © 2006 Elsevier B.V. All rights reserved.
Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Discrete Algorithms 2007;5(3):471-478
- Materia
-
Complexity
Real roots
Straight line program
Approximation theory
Computational complexity
Integer programming
Problem solving
Real roots
Straight line program
Polynomials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_15708667_v5_n3_p471_Perrucci
Ver los metadatos del registro completo
id |
BDUBAFCEN_c2319888a9cdfd75034906adc22ccfaa |
---|---|
oai_identifier_str |
paperaa:paper_15708667_v5_n3_p471_Perrucci |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Real roots of univariate polynomials and straight line programsPerrucci, D.Sabia, J.ComplexityReal rootsStraight line programApproximation theoryComputational complexityInteger programmingProblem solvingReal rootsStraight line programPolynomialsWe give a new proof of the NP-hardness of deciding the existence of real roots of an integer univariate polynomial encoded by a straight line program based on certain properties of the Tchebychev polynomials. These techniques allow us to prove some new NP-hardness results related to real root approximation for polynomials given by straight line programs. © 2006 Elsevier B.V. All rights reserved.Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_15708667_v5_n3_p471_PerrucciJ. Discrete Algorithms 2007;5(3):471-478reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:01Zpaperaa:paper_15708667_v5_n3_p471_PerrucciInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:02.418Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Real roots of univariate polynomials and straight line programs |
title |
Real roots of univariate polynomials and straight line programs |
spellingShingle |
Real roots of univariate polynomials and straight line programs Perrucci, D. Complexity Real roots Straight line program Approximation theory Computational complexity Integer programming Problem solving Real roots Straight line program Polynomials |
title_short |
Real roots of univariate polynomials and straight line programs |
title_full |
Real roots of univariate polynomials and straight line programs |
title_fullStr |
Real roots of univariate polynomials and straight line programs |
title_full_unstemmed |
Real roots of univariate polynomials and straight line programs |
title_sort |
Real roots of univariate polynomials and straight line programs |
dc.creator.none.fl_str_mv |
Perrucci, D. Sabia, J. |
author |
Perrucci, D. |
author_facet |
Perrucci, D. Sabia, J. |
author_role |
author |
author2 |
Sabia, J. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Complexity Real roots Straight line program Approximation theory Computational complexity Integer programming Problem solving Real roots Straight line program Polynomials |
topic |
Complexity Real roots Straight line program Approximation theory Computational complexity Integer programming Problem solving Real roots Straight line program Polynomials |
dc.description.none.fl_txt_mv |
We give a new proof of the NP-hardness of deciding the existence of real roots of an integer univariate polynomial encoded by a straight line program based on certain properties of the Tchebychev polynomials. These techniques allow us to prove some new NP-hardness results related to real root approximation for polynomials given by straight line programs. © 2006 Elsevier B.V. All rights reserved. Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We give a new proof of the NP-hardness of deciding the existence of real roots of an integer univariate polynomial encoded by a straight line program based on certain properties of the Tchebychev polynomials. These techniques allow us to prove some new NP-hardness results related to real root approximation for polynomials given by straight line programs. © 2006 Elsevier B.V. All rights reserved. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_15708667_v5_n3_p471_Perrucci |
url |
http://hdl.handle.net/20.500.12110/paper_15708667_v5_n3_p471_Perrucci |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Discrete Algorithms 2007;5(3):471-478 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142843297464320 |
score |
12.712165 |