Inhibition-based relaxation oscillations emerge in resonator networks
- Autores
- Bel, Andrea Liliana; Torresi, Ana María Luján; Rotstein, Horacio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the mechanisms responsible for the generation of oscillations in mutually inhibitory cells of non-oscillatory neurons and the transitions from non-relaxation (sinusoidal-like) oscillations to relaxation oscillations. We use a minimal model consisting of a 2D linear resonator, a 1D linear cell and graded synaptic inhibition described by a piecewise linear sigmoidal function. Individually, resonators exhibit a peak in their response to oscillatory inputs at a preferred (resonant) frequency, but they do not show intrinsic (damped) oscillations in response to constant perturbations. We show that network oscillations emerge in this model for appropriate balance of the model parameters, particularly the connectivity strength and the steepness of the connectivity function. For fixed values of the latter, there is a transition from sinusoidal-like to relaxation oscillations as the connectivity strength increases. Similarly, for fixed connectivity strength values, increasing the connectivity steepness also leads to relaxation oscillations. Interestingly, relaxation oscillations are not observed when the 2D linear node is a damped oscillator. We discuss the role of the intrinsic properties of the participating nodes by focusing on the effect that the resonator’s resonant frequency has on the network frequency and amplitude.
Fil: Bel, Andrea Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Torresi, Ana María Luján. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Rotstein, Horacio. Rutgers University; Estados Unidos - Materia
-
NEURAL NETWORKS
RESONANCE
RELAXATION OSCILLATION
CANARD PHENOMENON - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112002
Ver los metadatos del registro completo
id |
CONICETDig_85bf79d9acde877216e4bd07f8c0a1b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112002 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inhibition-based relaxation oscillations emerge in resonator networksBel, Andrea LilianaTorresi, Ana María LujánRotstein, HoracioNEURAL NETWORKSRESONANCERELAXATION OSCILLATIONCANARD PHENOMENONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate the mechanisms responsible for the generation of oscillations in mutually inhibitory cells of non-oscillatory neurons and the transitions from non-relaxation (sinusoidal-like) oscillations to relaxation oscillations. We use a minimal model consisting of a 2D linear resonator, a 1D linear cell and graded synaptic inhibition described by a piecewise linear sigmoidal function. Individually, resonators exhibit a peak in their response to oscillatory inputs at a preferred (resonant) frequency, but they do not show intrinsic (damped) oscillations in response to constant perturbations. We show that network oscillations emerge in this model for appropriate balance of the model parameters, particularly the connectivity strength and the steepness of the connectivity function. For fixed values of the latter, there is a transition from sinusoidal-like to relaxation oscillations as the connectivity strength increases. Similarly, for fixed connectivity strength values, increasing the connectivity steepness also leads to relaxation oscillations. Interestingly, relaxation oscillations are not observed when the 2D linear node is a damped oscillator. We discuss the role of the intrinsic properties of the participating nodes by focusing on the effect that the resonator’s resonant frequency has on the network frequency and amplitude.Fil: Bel, Andrea Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Torresi, Ana María Luján. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Rotstein, Horacio. Rutgers University; Estados UnidosEDP Sciences2019-05-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112002Bel, Andrea Liliana; Torresi, Ana María Luján; Rotstein, Horacio; Inhibition-based relaxation oscillations emerge in resonator networks; EDP Sciences; Mathematical Modelling of Natural Phenomena; 14; 4; 27-5-2019; 1-280973-53481760-6101CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mmnp-journal.org/10.1051/mmnp/2019019info:eu-repo/semantics/altIdentifier/doi/10.1051/mmnp/2019019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:48Zoai:ri.conicet.gov.ar:11336/112002instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:49.268CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inhibition-based relaxation oscillations emerge in resonator networks |
title |
Inhibition-based relaxation oscillations emerge in resonator networks |
spellingShingle |
Inhibition-based relaxation oscillations emerge in resonator networks Bel, Andrea Liliana NEURAL NETWORKS RESONANCE RELAXATION OSCILLATION CANARD PHENOMENON |
title_short |
Inhibition-based relaxation oscillations emerge in resonator networks |
title_full |
Inhibition-based relaxation oscillations emerge in resonator networks |
title_fullStr |
Inhibition-based relaxation oscillations emerge in resonator networks |
title_full_unstemmed |
Inhibition-based relaxation oscillations emerge in resonator networks |
title_sort |
Inhibition-based relaxation oscillations emerge in resonator networks |
dc.creator.none.fl_str_mv |
Bel, Andrea Liliana Torresi, Ana María Luján Rotstein, Horacio |
author |
Bel, Andrea Liliana |
author_facet |
Bel, Andrea Liliana Torresi, Ana María Luján Rotstein, Horacio |
author_role |
author |
author2 |
Torresi, Ana María Luján Rotstein, Horacio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
NEURAL NETWORKS RESONANCE RELAXATION OSCILLATION CANARD PHENOMENON |
topic |
NEURAL NETWORKS RESONANCE RELAXATION OSCILLATION CANARD PHENOMENON |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate the mechanisms responsible for the generation of oscillations in mutually inhibitory cells of non-oscillatory neurons and the transitions from non-relaxation (sinusoidal-like) oscillations to relaxation oscillations. We use a minimal model consisting of a 2D linear resonator, a 1D linear cell and graded synaptic inhibition described by a piecewise linear sigmoidal function. Individually, resonators exhibit a peak in their response to oscillatory inputs at a preferred (resonant) frequency, but they do not show intrinsic (damped) oscillations in response to constant perturbations. We show that network oscillations emerge in this model for appropriate balance of the model parameters, particularly the connectivity strength and the steepness of the connectivity function. For fixed values of the latter, there is a transition from sinusoidal-like to relaxation oscillations as the connectivity strength increases. Similarly, for fixed connectivity strength values, increasing the connectivity steepness also leads to relaxation oscillations. Interestingly, relaxation oscillations are not observed when the 2D linear node is a damped oscillator. We discuss the role of the intrinsic properties of the participating nodes by focusing on the effect that the resonator’s resonant frequency has on the network frequency and amplitude. Fil: Bel, Andrea Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Torresi, Ana María Luján. Universidad Nacional del Sur. Departamento de Matemática; Argentina Fil: Rotstein, Horacio. Rutgers University; Estados Unidos |
description |
We investigate the mechanisms responsible for the generation of oscillations in mutually inhibitory cells of non-oscillatory neurons and the transitions from non-relaxation (sinusoidal-like) oscillations to relaxation oscillations. We use a minimal model consisting of a 2D linear resonator, a 1D linear cell and graded synaptic inhibition described by a piecewise linear sigmoidal function. Individually, resonators exhibit a peak in their response to oscillatory inputs at a preferred (resonant) frequency, but they do not show intrinsic (damped) oscillations in response to constant perturbations. We show that network oscillations emerge in this model for appropriate balance of the model parameters, particularly the connectivity strength and the steepness of the connectivity function. For fixed values of the latter, there is a transition from sinusoidal-like to relaxation oscillations as the connectivity strength increases. Similarly, for fixed connectivity strength values, increasing the connectivity steepness also leads to relaxation oscillations. Interestingly, relaxation oscillations are not observed when the 2D linear node is a damped oscillator. We discuss the role of the intrinsic properties of the participating nodes by focusing on the effect that the resonator’s resonant frequency has on the network frequency and amplitude. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112002 Bel, Andrea Liliana; Torresi, Ana María Luján; Rotstein, Horacio; Inhibition-based relaxation oscillations emerge in resonator networks; EDP Sciences; Mathematical Modelling of Natural Phenomena; 14; 4; 27-5-2019; 1-28 0973-5348 1760-6101 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/112002 |
identifier_str_mv |
Bel, Andrea Liliana; Torresi, Ana María Luján; Rotstein, Horacio; Inhibition-based relaxation oscillations emerge in resonator networks; EDP Sciences; Mathematical Modelling of Natural Phenomena; 14; 4; 27-5-2019; 1-28 0973-5348 1760-6101 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mmnp-journal.org/10.1051/mmnp/2019019 info:eu-repo/semantics/altIdentifier/doi/10.1051/mmnp/2019019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614134476308480 |
score |
13.070432 |