Sparse resultants and straight-line programs
- Autores
- Jeronimo, Gabriela Tali; Sabia, Juan Vicente Rafael
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that the sparse resultant, redefined by D'Andrea and Sombra and by Esterov as a power of the classical sparse resultant, can be evaluated in a number of steps which is polynomial in its degree, its number of variables and the size of the exponents of the monomials in the Laurent polynomials involved in its definition. Moreover, we design a probabilistic algorithm of this order of complexity to compute a straight-line program that evaluates it within this number of steps.
Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
ALGORITHMS
SPARSE RESULTANTS
STRAIGHT-LINE PROGRAMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89011
Ver los metadatos del registro completo
id |
CONICETDig_7c0cbe438ed83c99529f9921c25e7816 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89011 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sparse resultants and straight-line programsJeronimo, Gabriela TaliSabia, Juan Vicente RafaelALGORITHMSSPARSE RESULTANTSSTRAIGHT-LINE PROGRAMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that the sparse resultant, redefined by D'Andrea and Sombra and by Esterov as a power of the classical sparse resultant, can be evaluated in a number of steps which is polynomial in its degree, its number of variables and the size of the exponents of the monomials in the Laurent polynomials involved in its definition. Moreover, we design a probabilistic algorithm of this order of complexity to compute a straight-line program that evaluates it within this number of steps.Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Ltd - Elsevier Science Ltd2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89011Jeronimo, Gabriela Tali; Sabia, Juan Vicente Rafael; Sparse resultants and straight-line programs; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 87; 7-2018; 14-270747-7171CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717117300561info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2017.05.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:54Zoai:ri.conicet.gov.ar:11336/89011instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:54.459CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sparse resultants and straight-line programs |
title |
Sparse resultants and straight-line programs |
spellingShingle |
Sparse resultants and straight-line programs Jeronimo, Gabriela Tali ALGORITHMS SPARSE RESULTANTS STRAIGHT-LINE PROGRAMS |
title_short |
Sparse resultants and straight-line programs |
title_full |
Sparse resultants and straight-line programs |
title_fullStr |
Sparse resultants and straight-line programs |
title_full_unstemmed |
Sparse resultants and straight-line programs |
title_sort |
Sparse resultants and straight-line programs |
dc.creator.none.fl_str_mv |
Jeronimo, Gabriela Tali Sabia, Juan Vicente Rafael |
author |
Jeronimo, Gabriela Tali |
author_facet |
Jeronimo, Gabriela Tali Sabia, Juan Vicente Rafael |
author_role |
author |
author2 |
Sabia, Juan Vicente Rafael |
author2_role |
author |
dc.subject.none.fl_str_mv |
ALGORITHMS SPARSE RESULTANTS STRAIGHT-LINE PROGRAMS |
topic |
ALGORITHMS SPARSE RESULTANTS STRAIGHT-LINE PROGRAMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove that the sparse resultant, redefined by D'Andrea and Sombra and by Esterov as a power of the classical sparse resultant, can be evaluated in a number of steps which is polynomial in its degree, its number of variables and the size of the exponents of the monomials in the Laurent polynomials involved in its definition. Moreover, we design a probabilistic algorithm of this order of complexity to compute a straight-line program that evaluates it within this number of steps. Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We prove that the sparse resultant, redefined by D'Andrea and Sombra and by Esterov as a power of the classical sparse resultant, can be evaluated in a number of steps which is polynomial in its degree, its number of variables and the size of the exponents of the monomials in the Laurent polynomials involved in its definition. Moreover, we design a probabilistic algorithm of this order of complexity to compute a straight-line program that evaluates it within this number of steps. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89011 Jeronimo, Gabriela Tali; Sabia, Juan Vicente Rafael; Sparse resultants and straight-line programs; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 87; 7-2018; 14-27 0747-7171 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89011 |
identifier_str_mv |
Jeronimo, Gabriela Tali; Sabia, Juan Vicente Rafael; Sparse resultants and straight-line programs; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 87; 7-2018; 14-27 0747-7171 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717117300561 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2017.05.005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614080635076608 |
score |
13.070432 |