The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type

Autores
Pradolini, Gladis Guadalupe; Salinas, Oscar Mario
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we give sufficient and necessary conditions for the boundednessof the fractional integral operator acting between weighted Orlicz spaces and suitableBMOφ spaces, in the general setting of spaces of homogeneous type. This result generalizesthose contained in [P1] and [P2] about the boundedness of the same operator actingbetween weighted Lp and Lipschitz integral spaces on Rn. We also give some propertiesof the classes of pairs of weights appearing in connection with this boundednes.
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
FRACTIONAL
ORLICZ
BMO
HOMOGENEOUS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100586

id CONICETDig_9084dbd87e6488f720a51e020d52b820
oai_identifier_str oai:ri.conicet.gov.ar:11336/100586
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous typePradolini, Gladis GuadalupeSalinas, Oscar MarioFRACTIONALORLICZBMOHOMOGENEOUShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we give sufficient and necessary conditions for the boundednessof the fractional integral operator acting between weighted Orlicz spaces and suitableBMOφ spaces, in the general setting of spaces of homogeneous type. This result generalizesthose contained in [P1] and [P2] about the boundedness of the same operator actingbetween weighted Lp and Lipschitz integral spaces on Rn. We also give some propertiesof the classes of pairs of weights appearing in connection with this boundednes.Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; ArgentinaFil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFaculty of Mathematics and Physics of Charles University2003-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100586Pradolini, Gladis Guadalupe; Salinas, Oscar Mario; The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type; Faculty of Mathematics and Physics of Charles University; Commentationes Mathematicae; 44; 7-2003; 469-4870010-2628CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://dml.cz/handle/10338.dmlcz/104573info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:23Zoai:ri.conicet.gov.ar:11336/100586instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:24.055CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type
title The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type
spellingShingle The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type
Pradolini, Gladis Guadalupe
FRACTIONAL
ORLICZ
BMO
HOMOGENEOUS
title_short The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type
title_full The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type
title_fullStr The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type
title_full_unstemmed The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type
title_sort The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type
dc.creator.none.fl_str_mv Pradolini, Gladis Guadalupe
Salinas, Oscar Mario
author Pradolini, Gladis Guadalupe
author_facet Pradolini, Gladis Guadalupe
Salinas, Oscar Mario
author_role author
author2 Salinas, Oscar Mario
author2_role author
dc.subject.none.fl_str_mv FRACTIONAL
ORLICZ
BMO
HOMOGENEOUS
topic FRACTIONAL
ORLICZ
BMO
HOMOGENEOUS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we give sufficient and necessary conditions for the boundednessof the fractional integral operator acting between weighted Orlicz spaces and suitableBMOφ spaces, in the general setting of spaces of homogeneous type. This result generalizesthose contained in [P1] and [P2] about the boundedness of the same operator actingbetween weighted Lp and Lipschitz integral spaces on Rn. We also give some propertiesof the classes of pairs of weights appearing in connection with this boundednes.
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description In this work we give sufficient and necessary conditions for the boundednessof the fractional integral operator acting between weighted Orlicz spaces and suitableBMOφ spaces, in the general setting of spaces of homogeneous type. This result generalizesthose contained in [P1] and [P2] about the boundedness of the same operator actingbetween weighted Lp and Lipschitz integral spaces on Rn. We also give some propertiesof the classes of pairs of weights appearing in connection with this boundednes.
publishDate 2003
dc.date.none.fl_str_mv 2003-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100586
Pradolini, Gladis Guadalupe; Salinas, Oscar Mario; The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type; Faculty of Mathematics and Physics of Charles University; Commentationes Mathematicae; 44; 7-2003; 469-487
0010-2628
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100586
identifier_str_mv Pradolini, Gladis Guadalupe; Salinas, Oscar Mario; The fractional integral between Orlicz and BMO(phi) spaces on spaces of homogeneous type; Faculty of Mathematics and Physics of Charles University; Commentationes Mathematicae; 44; 7-2003; 469-487
0010-2628
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://dml.cz/handle/10338.dmlcz/104573
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Faculty of Mathematics and Physics of Charles University
publisher.none.fl_str_mv Faculty of Mathematics and Physics of Charles University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613278657937408
score 13.070432