Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures

Autores
Andrada, Adrián Marcelo; Origlia, Marcos Miguel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the existence of lattices in almost abelian Lie groups that admit left invariant locally conformal Kähler or locally conformal symplectic structures in order to obtain compact solvmanifolds equipped with these geometric structures. In the former case, we show that such lattices exist only in dimension 4, while in the latter case we provide examples of such Lie groups admitting lattices in any even dimension.
Fil: Andrada, Adrián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Origlia, Marcos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Almost Abelian Lie Group
Locally Conformal Kähler Structure
Locally Conformal Symplectic Structure
Lattice
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59983

id CONICETDig_090f250f819fb553c197a24642d04e72
oai_identifier_str oai:ri.conicet.gov.ar:11336/59983
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structuresAndrada, Adrián MarceloOriglia, Marcos MiguelAlmost Abelian Lie GroupLocally Conformal Kähler StructureLocally Conformal Symplectic StructureLatticehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the existence of lattices in almost abelian Lie groups that admit left invariant locally conformal Kähler or locally conformal symplectic structures in order to obtain compact solvmanifolds equipped with these geometric structures. In the former case, we show that such lattices exist only in dimension 4, while in the latter case we provide examples of such Lie groups admitting lattices in any even dimension.Fil: Andrada, Adrián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Origlia, Marcos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59983Andrada, Adrián Marcelo; Origlia, Marcos Miguel; Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures; Springer; Manuscripta Mathematica; 155; 3-4; 3-2018; 389-4170025-2611CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00229-017-0938-3info:eu-repo/semantics/altIdentifier/doi/10.1007/s00229-017-0938-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:15Zoai:ri.conicet.gov.ar:11336/59983instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:15.957CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures
title Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures
spellingShingle Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures
Andrada, Adrián Marcelo
Almost Abelian Lie Group
Locally Conformal Kähler Structure
Locally Conformal Symplectic Structure
Lattice
title_short Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures
title_full Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures
title_fullStr Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures
title_full_unstemmed Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures
title_sort Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures
dc.creator.none.fl_str_mv Andrada, Adrián Marcelo
Origlia, Marcos Miguel
author Andrada, Adrián Marcelo
author_facet Andrada, Adrián Marcelo
Origlia, Marcos Miguel
author_role author
author2 Origlia, Marcos Miguel
author2_role author
dc.subject.none.fl_str_mv Almost Abelian Lie Group
Locally Conformal Kähler Structure
Locally Conformal Symplectic Structure
Lattice
topic Almost Abelian Lie Group
Locally Conformal Kähler Structure
Locally Conformal Symplectic Structure
Lattice
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the existence of lattices in almost abelian Lie groups that admit left invariant locally conformal Kähler or locally conformal symplectic structures in order to obtain compact solvmanifolds equipped with these geometric structures. In the former case, we show that such lattices exist only in dimension 4, while in the latter case we provide examples of such Lie groups admitting lattices in any even dimension.
Fil: Andrada, Adrián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Origlia, Marcos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description We study the existence of lattices in almost abelian Lie groups that admit left invariant locally conformal Kähler or locally conformal symplectic structures in order to obtain compact solvmanifolds equipped with these geometric structures. In the former case, we show that such lattices exist only in dimension 4, while in the latter case we provide examples of such Lie groups admitting lattices in any even dimension.
publishDate 2018
dc.date.none.fl_str_mv 2018-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59983
Andrada, Adrián Marcelo; Origlia, Marcos Miguel; Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures; Springer; Manuscripta Mathematica; 155; 3-4; 3-2018; 389-417
0025-2611
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59983
identifier_str_mv Andrada, Adrián Marcelo; Origlia, Marcos Miguel; Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures; Springer; Manuscripta Mathematica; 155; 3-4; 3-2018; 389-417
0025-2611
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00229-017-0938-3
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00229-017-0938-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614263651434496
score 13.070432