The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n
- Autores
- Campos, Silvina Mabel; Saal, Linda Victoria
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We denote by $H_{n}$ the $2n+1$-dimensional Heisenberg group and study the spherical transform associated with the generalized Gelfand pair $(U(p,q) \rtimes H_{n},U(p,q))$, $p+q=n$, which is defined on the space of Schwartz functions on $H_{n}$, and we characterize its image. In order to do that, since the spectrum associated to this pair can be identified with a subset $\Sigma$ of the plane, we introduce a space ${\cal H}_{n}$ of functions defined on $\mathbb{R}^2$ and we prove that a function defined on $\Sigma$ lies in the image if and only if it can be extended to a function in ${\cal H}_{n}$. In particular, the spherical transform of a Schwartz function $f$ on $H_{n}$ admits a Schwartz extension on the plane if and only if its restriction to the vertical axis lies in ${\cal S}(\mathbb{R})$.
Fil: Campos, Silvina Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Saal, Linda Victoria. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Heisenberg Group
Spherical Transform - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32135
Ver los metadatos del registro completo
id |
CONICETDig_1f10c4b47ca235698be762fbe29d49e5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32135 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=nCampos, Silvina MabelSaal, Linda VictoriaHeisenberg GroupSpherical Transformhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We denote by $H_{n}$ the $2n+1$-dimensional Heisenberg group and study the spherical transform associated with the generalized Gelfand pair $(U(p,q) \rtimes H_{n},U(p,q))$, $p+q=n$, which is defined on the space of Schwartz functions on $H_{n}$, and we characterize its image. In order to do that, since the spectrum associated to this pair can be identified with a subset $\Sigma$ of the plane, we introduce a space ${\cal H}_{n}$ of functions defined on $\mathbb{R}^2$ and we prove that a function defined on $\Sigma$ lies in the image if and only if it can be extended to a function in ${\cal H}_{n}$. In particular, the spherical transform of a Schwartz function $f$ on $H_{n}$ admits a Schwartz extension on the plane if and only if its restriction to the vertical axis lies in ${\cal S}(\mathbb{R})$.Fil: Campos, Silvina Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Saal, Linda Victoria. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaHeldermann Verlag2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32135Saal, Linda Victoria; Campos, Silvina Mabel; The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n ; Heldermann Verlag; Journal Of Lie Theory; 24; 3; 9-2014; 657-6850949-5932CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT24/JLT243/jlt24028.htminfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:51:43Zoai:ri.conicet.gov.ar:11336/32135instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:51:43.534CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n |
title |
The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n |
spellingShingle |
The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n Campos, Silvina Mabel Heisenberg Group Spherical Transform |
title_short |
The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n |
title_full |
The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n |
title_fullStr |
The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n |
title_full_unstemmed |
The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n |
title_sort |
The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n |
dc.creator.none.fl_str_mv |
Campos, Silvina Mabel Saal, Linda Victoria |
author |
Campos, Silvina Mabel |
author_facet |
Campos, Silvina Mabel Saal, Linda Victoria |
author_role |
author |
author2 |
Saal, Linda Victoria |
author2_role |
author |
dc.subject.none.fl_str_mv |
Heisenberg Group Spherical Transform |
topic |
Heisenberg Group Spherical Transform |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We denote by $H_{n}$ the $2n+1$-dimensional Heisenberg group and study the spherical transform associated with the generalized Gelfand pair $(U(p,q) \rtimes H_{n},U(p,q))$, $p+q=n$, which is defined on the space of Schwartz functions on $H_{n}$, and we characterize its image. In order to do that, since the spectrum associated to this pair can be identified with a subset $\Sigma$ of the plane, we introduce a space ${\cal H}_{n}$ of functions defined on $\mathbb{R}^2$ and we prove that a function defined on $\Sigma$ lies in the image if and only if it can be extended to a function in ${\cal H}_{n}$. In particular, the spherical transform of a Schwartz function $f$ on $H_{n}$ admits a Schwartz extension on the plane if and only if its restriction to the vertical axis lies in ${\cal S}(\mathbb{R})$. Fil: Campos, Silvina Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Saal, Linda Victoria. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We denote by $H_{n}$ the $2n+1$-dimensional Heisenberg group and study the spherical transform associated with the generalized Gelfand pair $(U(p,q) \rtimes H_{n},U(p,q))$, $p+q=n$, which is defined on the space of Schwartz functions on $H_{n}$, and we characterize its image. In order to do that, since the spectrum associated to this pair can be identified with a subset $\Sigma$ of the plane, we introduce a space ${\cal H}_{n}$ of functions defined on $\mathbb{R}^2$ and we prove that a function defined on $\Sigma$ lies in the image if and only if it can be extended to a function in ${\cal H}_{n}$. In particular, the spherical transform of a Schwartz function $f$ on $H_{n}$ admits a Schwartz extension on the plane if and only if its restriction to the vertical axis lies in ${\cal S}(\mathbb{R})$. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32135 Saal, Linda Victoria; Campos, Silvina Mabel; The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n ; Heldermann Verlag; Journal Of Lie Theory; 24; 3; 9-2014; 657-685 0949-5932 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32135 |
identifier_str_mv |
Saal, Linda Victoria; Campos, Silvina Mabel; The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n ; Heldermann Verlag; Journal Of Lie Theory; 24; 3; 9-2014; 657-685 0949-5932 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT24/JLT243/jlt24028.htm |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Heldermann Verlag |
publisher.none.fl_str_mv |
Heldermann Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606143195152384 |
score |
13.001348 |