Spherical Functions: The Spheres Vs. The Projective Spaces

Autores
Tirao, Juan Alfredo; Zurrián, Ignacio Nahuel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we establish a close relationship between the spherical functions of the n-dimensional sphere $S^n\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the n-dimensional real projective space $P^n(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for n odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type γ∈O^(n). When n is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair.
Fil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Spherical Functions
Orthogonal Group
Special Orthogonal Group
Group Representations.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32176

id CONICETDig_ba51ccd03ec76849335b9cd16c04caae
oai_identifier_str oai:ri.conicet.gov.ar:11336/32176
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spherical Functions: The Spheres Vs. The Projective SpacesTirao, Juan AlfredoZurrián, Ignacio NahuelSpherical FunctionsOrthogonal GroupSpecial Orthogonal GroupGroup Representations.https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we establish a close relationship between the spherical functions of the n-dimensional sphere $S^n\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the n-dimensional real projective space $P^n(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for n odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type γ∈O^(n). When n is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair.Fil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaHeldermann Verlag2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32176Tirao, Juan Alfredo; Zurrián, Ignacio Nahuel; Spherical Functions: The Spheres Vs. The Projective Spaces; Heldermann Verlag; Journal Of Lie Theory; 24; 1-2014; 147-1570949-5932CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1207.0024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:49Zoai:ri.conicet.gov.ar:11336/32176instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:49.396CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spherical Functions: The Spheres Vs. The Projective Spaces
title Spherical Functions: The Spheres Vs. The Projective Spaces
spellingShingle Spherical Functions: The Spheres Vs. The Projective Spaces
Tirao, Juan Alfredo
Spherical Functions
Orthogonal Group
Special Orthogonal Group
Group Representations.
title_short Spherical Functions: The Spheres Vs. The Projective Spaces
title_full Spherical Functions: The Spheres Vs. The Projective Spaces
title_fullStr Spherical Functions: The Spheres Vs. The Projective Spaces
title_full_unstemmed Spherical Functions: The Spheres Vs. The Projective Spaces
title_sort Spherical Functions: The Spheres Vs. The Projective Spaces
dc.creator.none.fl_str_mv Tirao, Juan Alfredo
Zurrián, Ignacio Nahuel
author Tirao, Juan Alfredo
author_facet Tirao, Juan Alfredo
Zurrián, Ignacio Nahuel
author_role author
author2 Zurrián, Ignacio Nahuel
author2_role author
dc.subject.none.fl_str_mv Spherical Functions
Orthogonal Group
Special Orthogonal Group
Group Representations.
topic Spherical Functions
Orthogonal Group
Special Orthogonal Group
Group Representations.
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we establish a close relationship between the spherical functions of the n-dimensional sphere $S^n\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the n-dimensional real projective space $P^n(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for n odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type γ∈O^(n). When n is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair.
Fil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description In this paper we establish a close relationship between the spherical functions of the n-dimensional sphere $S^n\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the n-dimensional real projective space $P^n(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for n odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type γ∈O^(n). When n is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32176
Tirao, Juan Alfredo; Zurrián, Ignacio Nahuel; Spherical Functions: The Spheres Vs. The Projective Spaces; Heldermann Verlag; Journal Of Lie Theory; 24; 1-2014; 147-157
0949-5932
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32176
identifier_str_mv Tirao, Juan Alfredo; Zurrián, Ignacio Nahuel; Spherical Functions: The Spheres Vs. The Projective Spaces; Heldermann Verlag; Journal Of Lie Theory; 24; 1-2014; 147-157
0949-5932
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1207.0024
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Heldermann Verlag
publisher.none.fl_str_mv Heldermann Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613591311843328
score 13.070432