Spherical Functions: The Spheres Vs. The Projective Spaces
- Autores
- Tirao, Juan Alfredo; Zurrián, Ignacio Nahuel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we establish a close relationship between the spherical functions of the n-dimensional sphere $S^n\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the n-dimensional real projective space $P^n(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for n odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type γ∈O^(n). When n is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair.
Fil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Spherical Functions
Orthogonal Group
Special Orthogonal Group
Group Representations. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32176
Ver los metadatos del registro completo
id |
CONICETDig_ba51ccd03ec76849335b9cd16c04caae |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32176 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spherical Functions: The Spheres Vs. The Projective SpacesTirao, Juan AlfredoZurrián, Ignacio NahuelSpherical FunctionsOrthogonal GroupSpecial Orthogonal GroupGroup Representations.https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we establish a close relationship between the spherical functions of the n-dimensional sphere $S^n\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the n-dimensional real projective space $P^n(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for n odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type γ∈O^(n). When n is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair.Fil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaHeldermann Verlag2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32176Tirao, Juan Alfredo; Zurrián, Ignacio Nahuel; Spherical Functions: The Spheres Vs. The Projective Spaces; Heldermann Verlag; Journal Of Lie Theory; 24; 1-2014; 147-1570949-5932CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1207.0024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:49Zoai:ri.conicet.gov.ar:11336/32176instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:49.396CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spherical Functions: The Spheres Vs. The Projective Spaces |
title |
Spherical Functions: The Spheres Vs. The Projective Spaces |
spellingShingle |
Spherical Functions: The Spheres Vs. The Projective Spaces Tirao, Juan Alfredo Spherical Functions Orthogonal Group Special Orthogonal Group Group Representations. |
title_short |
Spherical Functions: The Spheres Vs. The Projective Spaces |
title_full |
Spherical Functions: The Spheres Vs. The Projective Spaces |
title_fullStr |
Spherical Functions: The Spheres Vs. The Projective Spaces |
title_full_unstemmed |
Spherical Functions: The Spheres Vs. The Projective Spaces |
title_sort |
Spherical Functions: The Spheres Vs. The Projective Spaces |
dc.creator.none.fl_str_mv |
Tirao, Juan Alfredo Zurrián, Ignacio Nahuel |
author |
Tirao, Juan Alfredo |
author_facet |
Tirao, Juan Alfredo Zurrián, Ignacio Nahuel |
author_role |
author |
author2 |
Zurrián, Ignacio Nahuel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Spherical Functions Orthogonal Group Special Orthogonal Group Group Representations. |
topic |
Spherical Functions Orthogonal Group Special Orthogonal Group Group Representations. |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we establish a close relationship between the spherical functions of the n-dimensional sphere $S^n\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the n-dimensional real projective space $P^n(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for n odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type γ∈O^(n). When n is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair. Fil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
In this paper we establish a close relationship between the spherical functions of the n-dimensional sphere $S^n\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the n-dimensional real projective space $P^n(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for n odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type γ∈O^(n). When n is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32176 Tirao, Juan Alfredo; Zurrián, Ignacio Nahuel; Spherical Functions: The Spheres Vs. The Projective Spaces; Heldermann Verlag; Journal Of Lie Theory; 24; 1-2014; 147-157 0949-5932 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32176 |
identifier_str_mv |
Tirao, Juan Alfredo; Zurrián, Ignacio Nahuel; Spherical Functions: The Spheres Vs. The Projective Spaces; Heldermann Verlag; Journal Of Lie Theory; 24; 1-2014; 147-157 0949-5932 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1207.0024 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Heldermann Verlag |
publisher.none.fl_str_mv |
Heldermann Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613591311843328 |
score |
13.070432 |