Nonlocal heat equations in the Heisenberg group
- Autores
- Vidal, Raúl Emilio
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the following nonlocal diffusion equation in the Heisenberg group Hn,ut(z,s,t)=J∗u(z,s,t)-u(z,s,t),where ∗ denote convolution product and J satisfies appropriated hypothesis. For the Cauchy problem we obtain that the asymptotic behavior of the solutions is the same form that the one for the parabolic equation for the fractional laplace operator. To obtain this result we use the spherical transform related to the pair (U(n) , Hn). Finally we prove that solutions of properly rescaled nonlocal Dirichlet problem converge uniformly to the solution of the corresponding Dirichlet problem for the classical heat equation in the Heisenberg group.
Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
HEISENBERG GROUP
NONLOCAL DIFFUSION
SPHERICAL TRANSFORM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59992
Ver los metadatos del registro completo
id |
CONICETDig_aa22b79fc70275b5ec47200948a126ee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59992 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonlocal heat equations in the Heisenberg groupVidal, Raúl EmilioHEISENBERG GROUPNONLOCAL DIFFUSIONSPHERICAL TRANSFORMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the following nonlocal diffusion equation in the Heisenberg group Hn,ut(z,s,t)=J∗u(z,s,t)-u(z,s,t),where ∗ denote convolution product and J satisfies appropriated hypothesis. For the Cauchy problem we obtain that the asymptotic behavior of the solutions is the same form that the one for the parabolic equation for the fractional laplace operator. To obtain this result we use the spherical transform related to the pair (U(n) , Hn). Finally we prove that solutions of properly rescaled nonlocal Dirichlet problem converge uniformly to the solution of the corresponding Dirichlet problem for the classical heat equation in the Heisenberg group.Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59992Vidal, Raúl Emilio; Nonlocal heat equations in the Heisenberg group; Springer; Nonlinear Differential Equations And Applications; 24; 5; 10-2017; 1-211021-9722CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00030-017-0479-1info:eu-repo/semantics/altIdentifier/doi/10.1007/s00030-017-0479-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:55:04Zoai:ri.conicet.gov.ar:11336/59992instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:55:05.045CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonlocal heat equations in the Heisenberg group |
title |
Nonlocal heat equations in the Heisenberg group |
spellingShingle |
Nonlocal heat equations in the Heisenberg group Vidal, Raúl Emilio HEISENBERG GROUP NONLOCAL DIFFUSION SPHERICAL TRANSFORM |
title_short |
Nonlocal heat equations in the Heisenberg group |
title_full |
Nonlocal heat equations in the Heisenberg group |
title_fullStr |
Nonlocal heat equations in the Heisenberg group |
title_full_unstemmed |
Nonlocal heat equations in the Heisenberg group |
title_sort |
Nonlocal heat equations in the Heisenberg group |
dc.creator.none.fl_str_mv |
Vidal, Raúl Emilio |
author |
Vidal, Raúl Emilio |
author_facet |
Vidal, Raúl Emilio |
author_role |
author |
dc.subject.none.fl_str_mv |
HEISENBERG GROUP NONLOCAL DIFFUSION SPHERICAL TRANSFORM |
topic |
HEISENBERG GROUP NONLOCAL DIFFUSION SPHERICAL TRANSFORM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the following nonlocal diffusion equation in the Heisenberg group Hn,ut(z,s,t)=J∗u(z,s,t)-u(z,s,t),where ∗ denote convolution product and J satisfies appropriated hypothesis. For the Cauchy problem we obtain that the asymptotic behavior of the solutions is the same form that the one for the parabolic equation for the fractional laplace operator. To obtain this result we use the spherical transform related to the pair (U(n) , Hn). Finally we prove that solutions of properly rescaled nonlocal Dirichlet problem converge uniformly to the solution of the corresponding Dirichlet problem for the classical heat equation in the Heisenberg group. Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We study the following nonlocal diffusion equation in the Heisenberg group Hn,ut(z,s,t)=J∗u(z,s,t)-u(z,s,t),where ∗ denote convolution product and J satisfies appropriated hypothesis. For the Cauchy problem we obtain that the asymptotic behavior of the solutions is the same form that the one for the parabolic equation for the fractional laplace operator. To obtain this result we use the spherical transform related to the pair (U(n) , Hn). Finally we prove that solutions of properly rescaled nonlocal Dirichlet problem converge uniformly to the solution of the corresponding Dirichlet problem for the classical heat equation in the Heisenberg group. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59992 Vidal, Raúl Emilio; Nonlocal heat equations in the Heisenberg group; Springer; Nonlinear Differential Equations And Applications; 24; 5; 10-2017; 1-21 1021-9722 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59992 |
identifier_str_mv |
Vidal, Raúl Emilio; Nonlocal heat equations in the Heisenberg group; Springer; Nonlinear Differential Equations And Applications; 24; 5; 10-2017; 1-21 1021-9722 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00030-017-0479-1 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00030-017-0479-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606892712034304 |
score |
13.001348 |