The Spherical Transform of any k-Type in a Locally Compact Group
- Autores
- Román, Pablo Manuel; Tirao, Juan Alfredo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a locally compact group G and a compact subgroup K, we develop and study a spherical transform on the convolution algebra Cc;(G) of all continuous functions f with compact support on G such that f = f = f . Here denotes the character of a unitary irreducible representation of K times its dimension. We obtain an inversion formula for the spherical transform by using the Fourier inversion formula in G. The case of the group G = SU(2; 1) and the compact subgroup K = U(2) is discussed in detail. We give explicit expressions for the spherical transform and the corresponding inversion formula in terms of the matrix hypergeometric function 2H1.
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina
Fil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina - Materia
-
Harmonic analysis
Matrix valued spherical functions
Spherical transform - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/271929
Ver los metadatos del registro completo
id |
CONICETDig_4ad6af52e2adbcb0c687dcc6a7f39df1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/271929 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Spherical Transform of any k-Type in a Locally Compact GroupRomán, Pablo ManuelTirao, Juan AlfredoHarmonic analysisMatrix valued spherical functionsSpherical transformhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a locally compact group G and a compact subgroup K, we develop and study a spherical transform on the convolution algebra Cc;(G) of all continuous functions f with compact support on G such that f = f = f . Here denotes the character of a unitary irreducible representation of K times its dimension. We obtain an inversion formula for the spherical transform by using the Fourier inversion formula in G. The case of the group G = SU(2; 1) and the compact subgroup K = U(2) is discussed in detail. We give explicit expressions for the spherical transform and the corresponding inversion formula in terms of the matrix hypergeometric function 2H1.Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; ArgentinaFil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; ArgentinaHeldermann Verlag2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271929Román, Pablo Manuel; Tirao, Juan Alfredo; The Spherical Transform of any k-Type in a Locally Compact Group; Heldermann Verlag; Journal Of Lie Theory; 22; 2; 10-2012; 361-3950949-5932CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT22/JLT222/jlt22014.htminfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:42:20Zoai:ri.conicet.gov.ar:11336/271929instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:42:21.26CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Spherical Transform of any k-Type in a Locally Compact Group |
title |
The Spherical Transform of any k-Type in a Locally Compact Group |
spellingShingle |
The Spherical Transform of any k-Type in a Locally Compact Group Román, Pablo Manuel Harmonic analysis Matrix valued spherical functions Spherical transform |
title_short |
The Spherical Transform of any k-Type in a Locally Compact Group |
title_full |
The Spherical Transform of any k-Type in a Locally Compact Group |
title_fullStr |
The Spherical Transform of any k-Type in a Locally Compact Group |
title_full_unstemmed |
The Spherical Transform of any k-Type in a Locally Compact Group |
title_sort |
The Spherical Transform of any k-Type in a Locally Compact Group |
dc.creator.none.fl_str_mv |
Román, Pablo Manuel Tirao, Juan Alfredo |
author |
Román, Pablo Manuel |
author_facet |
Román, Pablo Manuel Tirao, Juan Alfredo |
author_role |
author |
author2 |
Tirao, Juan Alfredo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Harmonic analysis Matrix valued spherical functions Spherical transform |
topic |
Harmonic analysis Matrix valued spherical functions Spherical transform |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a locally compact group G and a compact subgroup K, we develop and study a spherical transform on the convolution algebra Cc;(G) of all continuous functions f with compact support on G such that f = f = f . Here denotes the character of a unitary irreducible representation of K times its dimension. We obtain an inversion formula for the spherical transform by using the Fourier inversion formula in G. The case of the group G = SU(2; 1) and the compact subgroup K = U(2) is discussed in detail. We give explicit expressions for the spherical transform and the corresponding inversion formula in terms of the matrix hypergeometric function 2H1. Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina Fil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina |
description |
Given a locally compact group G and a compact subgroup K, we develop and study a spherical transform on the convolution algebra Cc;(G) of all continuous functions f with compact support on G such that f = f = f . Here denotes the character of a unitary irreducible representation of K times its dimension. We obtain an inversion formula for the spherical transform by using the Fourier inversion formula in G. The case of the group G = SU(2; 1) and the compact subgroup K = U(2) is discussed in detail. We give explicit expressions for the spherical transform and the corresponding inversion formula in terms of the matrix hypergeometric function 2H1. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/271929 Román, Pablo Manuel; Tirao, Juan Alfredo; The Spherical Transform of any k-Type in a Locally Compact Group; Heldermann Verlag; Journal Of Lie Theory; 22; 2; 10-2012; 361-395 0949-5932 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/271929 |
identifier_str_mv |
Román, Pablo Manuel; Tirao, Juan Alfredo; The Spherical Transform of any k-Type in a Locally Compact Group; Heldermann Verlag; Journal Of Lie Theory; 22; 2; 10-2012; 361-395 0949-5932 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT22/JLT222/jlt22014.htm |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Heldermann Verlag |
publisher.none.fl_str_mv |
Heldermann Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082924459327488 |
score |
12.891075 |