Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models
- Autores
- Bonetto, Julián Gerardo; Villaamil Lepori, Edda; Puntarulo, Susana Ángela
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The hypothesis of this work was that radical generation after exposure
to As may contribute to its toxic effects in the brain tissues. Oxidative
status of brain was studied, both using ex vivo and in vivo protocols of
exposure to the toxic. The generation rate of lipid radicals (LR●), and
ascorbyl radical (A●) content, were measured by Electron Paramagnetic
Resonance (EPR). In the ex vivo model control brain homogenates were
exposed to As, and a 2-fold increase was detected in the LR● generation
rate, with no changes in A● radical content. A significant decrease of
33% and 30% in the content of glutathione (GSH) was measured after
exposure to 3.3 and 4.0 pmol As/mg FW, respectively. In the in vivo
model, As was ip injected to rats and the rate of generation of LR● by
homogenates of brain tissue, was increased by 81 and 122%, as
compared to control animals after the injection of 3.0 and 5.8 mg
As/kg, respectively. Neither GSH, nor -tocopherol (-T) nor
ascorbate (AH-) content was affected in As-treated rats, as compared to
the values from control animals. The LR●/α-T content ratio was
significantly increased in As-treated animals as compared to control
brains. The A●/AH− content ratio was not affected by As exposure. The
content of total Fe showed non-significant differences between control
and rat brains after 24 h of As administration. The data presented here
showed new evidence on the generation of specific radical species by
As treatment employing EPR methodologies in both, ex vivo and in
vivo models. The data suggested the triggering of different pathways
leading to some reactive species generation may occur accordingly to
the via As reaches the brain, even when the same concentration of the
toxic was achieved by the tissues.
Fil: Bonetto, Julián Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina
Fil: Villaamil Lepori, Edda. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina
Fil: Puntarulo, Susana Ángela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina - Materia
-
Antioxidant
Arsenico
Brain
Epr detection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/65980
Ver los metadatos del registro completo
id |
CONICETDig_1e943f641861f5ad19f135d7091c2cd1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/65980 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo modelsBonetto, Julián GerardoVillaamil Lepori, EddaPuntarulo, Susana ÁngelaAntioxidantArsenicoBrainEpr detectionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The hypothesis of this work was that radical generation after exposure<br />to As may contribute to its toxic effects in the brain tissues. Oxidative<br />status of brain was studied, both using ex vivo and in vivo protocols of<br />exposure to the toxic. The generation rate of lipid radicals (LR●), and<br />ascorbyl radical (A●) content, were measured by Electron Paramagnetic<br />Resonance (EPR). In the ex vivo model control brain homogenates were<br />exposed to As, and a 2-fold increase was detected in the LR● generation<br />rate, with no changes in A● radical content. A significant decrease of<br />33% and 30% in the content of glutathione (GSH) was measured after<br />exposure to 3.3 and 4.0 pmol As/mg FW, respectively. In the in vivo<br />model, As was ip injected to rats and the rate of generation of LR● by<br />homogenates of brain tissue, was increased by 81 and 122%, as<br />compared to control animals after the injection of 3.0 and 5.8 mg<br />As/kg, respectively. Neither GSH, nor -tocopherol (-T) nor<br />ascorbate (AH-) content was affected in As-treated rats, as compared to<br />the values from control animals. The LR●/α-T content ratio was<br />significantly increased in As-treated animals as compared to control<br />brains. The A●/AH− content ratio was not affected by As exposure. The<br />content of total Fe showed non-significant differences between control<br />and rat brains after 24 h of As administration. The data presented here<br />showed new evidence on the generation of specific radical species by<br />As treatment employing EPR methodologies in both, ex vivo and in<br />vivo models. The data suggested the triggering of different pathways<br />leading to some reactive species generation may occur accordingly to<br />the via As reaches the brain, even when the same concentration of the<br />toxic was achieved by the tissues.Fil: Bonetto, Julián Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Villaamil Lepori, Edda. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Puntarulo, Susana Ángela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaInternational Journal of advanced research2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65980Bonetto, Julián Gerardo; Villaamil Lepori, Edda; Puntarulo, Susana Ángela; Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models; International Journal of advanced research; International Journal of Advanced Research; 5; 9; 10-2017; 41-512320-5407CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.21474/IJAR01/5505info:eu-repo/semantics/altIdentifier/url/http://www.journalijar.com/article/19981/oxidative-balance-in-brain-after-exposure-to-arsenic-in-ex-vivo-and-in-vivo-models./info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:52Zoai:ri.conicet.gov.ar:11336/65980instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:52.878CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models |
title |
Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models |
spellingShingle |
Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models Bonetto, Julián Gerardo Antioxidant Arsenico Brain Epr detection |
title_short |
Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models |
title_full |
Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models |
title_fullStr |
Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models |
title_full_unstemmed |
Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models |
title_sort |
Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models |
dc.creator.none.fl_str_mv |
Bonetto, Julián Gerardo Villaamil Lepori, Edda Puntarulo, Susana Ángela |
author |
Bonetto, Julián Gerardo |
author_facet |
Bonetto, Julián Gerardo Villaamil Lepori, Edda Puntarulo, Susana Ángela |
author_role |
author |
author2 |
Villaamil Lepori, Edda Puntarulo, Susana Ángela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Antioxidant Arsenico Brain Epr detection |
topic |
Antioxidant Arsenico Brain Epr detection |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The hypothesis of this work was that radical generation after exposure<br />to As may contribute to its toxic effects in the brain tissues. Oxidative<br />status of brain was studied, both using ex vivo and in vivo protocols of<br />exposure to the toxic. The generation rate of lipid radicals (LR●), and<br />ascorbyl radical (A●) content, were measured by Electron Paramagnetic<br />Resonance (EPR). In the ex vivo model control brain homogenates were<br />exposed to As, and a 2-fold increase was detected in the LR● generation<br />rate, with no changes in A● radical content. A significant decrease of<br />33% and 30% in the content of glutathione (GSH) was measured after<br />exposure to 3.3 and 4.0 pmol As/mg FW, respectively. In the in vivo<br />model, As was ip injected to rats and the rate of generation of LR● by<br />homogenates of brain tissue, was increased by 81 and 122%, as<br />compared to control animals after the injection of 3.0 and 5.8 mg<br />As/kg, respectively. Neither GSH, nor -tocopherol (-T) nor<br />ascorbate (AH-) content was affected in As-treated rats, as compared to<br />the values from control animals. The LR●/α-T content ratio was<br />significantly increased in As-treated animals as compared to control<br />brains. The A●/AH− content ratio was not affected by As exposure. The<br />content of total Fe showed non-significant differences between control<br />and rat brains after 24 h of As administration. The data presented here<br />showed new evidence on the generation of specific radical species by<br />As treatment employing EPR methodologies in both, ex vivo and in<br />vivo models. The data suggested the triggering of different pathways<br />leading to some reactive species generation may occur accordingly to<br />the via As reaches the brain, even when the same concentration of the<br />toxic was achieved by the tissues. Fil: Bonetto, Julián Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina Fil: Villaamil Lepori, Edda. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina Fil: Puntarulo, Susana Ángela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina |
description |
The hypothesis of this work was that radical generation after exposure<br />to As may contribute to its toxic effects in the brain tissues. Oxidative<br />status of brain was studied, both using ex vivo and in vivo protocols of<br />exposure to the toxic. The generation rate of lipid radicals (LR●), and<br />ascorbyl radical (A●) content, were measured by Electron Paramagnetic<br />Resonance (EPR). In the ex vivo model control brain homogenates were<br />exposed to As, and a 2-fold increase was detected in the LR● generation<br />rate, with no changes in A● radical content. A significant decrease of<br />33% and 30% in the content of glutathione (GSH) was measured after<br />exposure to 3.3 and 4.0 pmol As/mg FW, respectively. In the in vivo<br />model, As was ip injected to rats and the rate of generation of LR● by<br />homogenates of brain tissue, was increased by 81 and 122%, as<br />compared to control animals after the injection of 3.0 and 5.8 mg<br />As/kg, respectively. Neither GSH, nor -tocopherol (-T) nor<br />ascorbate (AH-) content was affected in As-treated rats, as compared to<br />the values from control animals. The LR●/α-T content ratio was<br />significantly increased in As-treated animals as compared to control<br />brains. The A●/AH− content ratio was not affected by As exposure. The<br />content of total Fe showed non-significant differences between control<br />and rat brains after 24 h of As administration. The data presented here<br />showed new evidence on the generation of specific radical species by<br />As treatment employing EPR methodologies in both, ex vivo and in<br />vivo models. The data suggested the triggering of different pathways<br />leading to some reactive species generation may occur accordingly to<br />the via As reaches the brain, even when the same concentration of the<br />toxic was achieved by the tissues. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/65980 Bonetto, Julián Gerardo; Villaamil Lepori, Edda; Puntarulo, Susana Ángela; Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models; International Journal of advanced research; International Journal of Advanced Research; 5; 9; 10-2017; 41-51 2320-5407 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/65980 |
identifier_str_mv |
Bonetto, Julián Gerardo; Villaamil Lepori, Edda; Puntarulo, Susana Ángela; Oxidative balance in brain after exposure to arsenic in ex vivo and in vivo models; International Journal of advanced research; International Journal of Advanced Research; 5; 9; 10-2017; 41-51 2320-5407 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.21474/IJAR01/5505 info:eu-repo/semantics/altIdentifier/url/http://www.journalijar.com/article/19981/oxidative-balance-in-brain-after-exposure-to-arsenic-in-ex-vivo-and-in-vivo-models./ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Journal of advanced research |
publisher.none.fl_str_mv |
International Journal of advanced research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613195505860608 |
score |
13.070432 |