Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools
- Autores
- Fernandes, David Douglas de Sousa; Romeo, Florencia; Krepper, Gabriela; Di Nezio, Maria Susana; Pistonesi, Marcelo Fabian; Centurión, María Eugenia; Ugulino de Araújo, Mário César; de Araújo, Mário César Ugulino; Goncalves Dias Diniz, Paulo Henrique
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we developed an eco-friendly methodology for quantification and identification of adulteration in the fat content of chicken hamburgers by combining color histograms (in RGB, HSI, and Grayscale channels) obtained from digital images and chemometric tools. For this, 74 samples of chicken hamburgers with a fat content of 14.27–47.55% (w w−1) were studied, taking into account adulterations with a fat content higher than 20% (w w−1), as limited by Argentinean legislation. In both quantitative and qualitative approaches, chemometric models containing HSI histograms achieved the best results, because this is very suitable in situations where there is a need to separate the chromaticity from the intensity. In other words, the opacity of the sample surfaces increases with increasing fat content. PLS/HSI achieved the best quantification result with a R2 of 0.95, RMSEP of 2.01% w w−1, REP of 7.26% w w−1 and RPD of 4.47 in the prediction set, while SPA-LDA/Grayscale + HSI reached the most satisfactory in the test set with only one misclassified sample. Therefore, the proposed methodologies represent excellent alternatives to conventional Soxhlet extraction method, since they follow the primary principles of Green Analytical Chemistry, avoiding waste generation, besides not using either chemical reagents or solvents.
Fil: Fernandes, David Douglas de Sousa. Universidade Federal da Paraíba; Brasil
Fil: Romeo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Krepper, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Di Nezio, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Centurión, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Ugulino de Araújo, Mário César. Universidade Federal da Paraíba; Brasil
Fil: de Araújo, Mário César Ugulino. Universidade Federal da Paraíba; Brasil
Fil: Goncalves Dias Diniz, Paulo Henrique. Universidade Federal da Bahia; Brasil - Materia
-
ADULTERATION
CHEMOMETRICS
FAT CONTENT
FOOD QUALITY
MEAT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/109204
Ver los metadatos del registro completo
id |
CONICETDig_1e3d519c03614082db57fd131ba55d1d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/109204 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric toolsFernandes, David Douglas de SousaRomeo, FlorenciaKrepper, GabrielaDi Nezio, Maria SusanaPistonesi, Marcelo FabianCenturión, María EugeniaUgulino de Araújo, Mário Césarde Araújo, Mário César UgulinoGoncalves Dias Diniz, Paulo HenriqueADULTERATIONCHEMOMETRICSFAT CONTENTFOOD QUALITYMEAThttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this work, we developed an eco-friendly methodology for quantification and identification of adulteration in the fat content of chicken hamburgers by combining color histograms (in RGB, HSI, and Grayscale channels) obtained from digital images and chemometric tools. For this, 74 samples of chicken hamburgers with a fat content of 14.27–47.55% (w w−1) were studied, taking into account adulterations with a fat content higher than 20% (w w−1), as limited by Argentinean legislation. In both quantitative and qualitative approaches, chemometric models containing HSI histograms achieved the best results, because this is very suitable in situations where there is a need to separate the chromaticity from the intensity. In other words, the opacity of the sample surfaces increases with increasing fat content. PLS/HSI achieved the best quantification result with a R2 of 0.95, RMSEP of 2.01% w w−1, REP of 7.26% w w−1 and RPD of 4.47 in the prediction set, while SPA-LDA/Grayscale + HSI reached the most satisfactory in the test set with only one misclassified sample. Therefore, the proposed methodologies represent excellent alternatives to conventional Soxhlet extraction method, since they follow the primary principles of Green Analytical Chemistry, avoiding waste generation, besides not using either chemical reagents or solvents.Fil: Fernandes, David Douglas de Sousa. Universidade Federal da Paraíba; BrasilFil: Romeo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Krepper, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Di Nezio, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Centurión, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Ugulino de Araújo, Mário César. Universidade Federal da Paraíba; BrasilFil: de Araújo, Mário César Ugulino. Universidade Federal da Paraíba; BrasilFil: Goncalves Dias Diniz, Paulo Henrique. Universidade Federal da Bahia; BrasilElsevier Science2019-02-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109204Fernandes, David Douglas de Sousa; Romeo, Florencia; Krepper, Gabriela; Di Nezio, Maria Susana; Pistonesi, Marcelo Fabian; et al.; Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools; Elsevier Science; LWT - Food Science and Technology; 100; 19-2-2019; 20-270023-6438CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0023643818308806info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lwt.2018.10.034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:03Zoai:ri.conicet.gov.ar:11336/109204instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:03.74CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools |
title |
Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools |
spellingShingle |
Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools Fernandes, David Douglas de Sousa ADULTERATION CHEMOMETRICS FAT CONTENT FOOD QUALITY MEAT |
title_short |
Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools |
title_full |
Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools |
title_fullStr |
Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools |
title_full_unstemmed |
Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools |
title_sort |
Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools |
dc.creator.none.fl_str_mv |
Fernandes, David Douglas de Sousa Romeo, Florencia Krepper, Gabriela Di Nezio, Maria Susana Pistonesi, Marcelo Fabian Centurión, María Eugenia Ugulino de Araújo, Mário César de Araújo, Mário César Ugulino Goncalves Dias Diniz, Paulo Henrique |
author |
Fernandes, David Douglas de Sousa |
author_facet |
Fernandes, David Douglas de Sousa Romeo, Florencia Krepper, Gabriela Di Nezio, Maria Susana Pistonesi, Marcelo Fabian Centurión, María Eugenia Ugulino de Araújo, Mário César de Araújo, Mário César Ugulino Goncalves Dias Diniz, Paulo Henrique |
author_role |
author |
author2 |
Romeo, Florencia Krepper, Gabriela Di Nezio, Maria Susana Pistonesi, Marcelo Fabian Centurión, María Eugenia Ugulino de Araújo, Mário César de Araújo, Mário César Ugulino Goncalves Dias Diniz, Paulo Henrique |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
ADULTERATION CHEMOMETRICS FAT CONTENT FOOD QUALITY MEAT |
topic |
ADULTERATION CHEMOMETRICS FAT CONTENT FOOD QUALITY MEAT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we developed an eco-friendly methodology for quantification and identification of adulteration in the fat content of chicken hamburgers by combining color histograms (in RGB, HSI, and Grayscale channels) obtained from digital images and chemometric tools. For this, 74 samples of chicken hamburgers with a fat content of 14.27–47.55% (w w−1) were studied, taking into account adulterations with a fat content higher than 20% (w w−1), as limited by Argentinean legislation. In both quantitative and qualitative approaches, chemometric models containing HSI histograms achieved the best results, because this is very suitable in situations where there is a need to separate the chromaticity from the intensity. In other words, the opacity of the sample surfaces increases with increasing fat content. PLS/HSI achieved the best quantification result with a R2 of 0.95, RMSEP of 2.01% w w−1, REP of 7.26% w w−1 and RPD of 4.47 in the prediction set, while SPA-LDA/Grayscale + HSI reached the most satisfactory in the test set with only one misclassified sample. Therefore, the proposed methodologies represent excellent alternatives to conventional Soxhlet extraction method, since they follow the primary principles of Green Analytical Chemistry, avoiding waste generation, besides not using either chemical reagents or solvents. Fil: Fernandes, David Douglas de Sousa. Universidade Federal da Paraíba; Brasil Fil: Romeo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Krepper, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Di Nezio, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Centurión, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Ugulino de Araújo, Mário César. Universidade Federal da Paraíba; Brasil Fil: de Araújo, Mário César Ugulino. Universidade Federal da Paraíba; Brasil Fil: Goncalves Dias Diniz, Paulo Henrique. Universidade Federal da Bahia; Brasil |
description |
In this work, we developed an eco-friendly methodology for quantification and identification of adulteration in the fat content of chicken hamburgers by combining color histograms (in RGB, HSI, and Grayscale channels) obtained from digital images and chemometric tools. For this, 74 samples of chicken hamburgers with a fat content of 14.27–47.55% (w w−1) were studied, taking into account adulterations with a fat content higher than 20% (w w−1), as limited by Argentinean legislation. In both quantitative and qualitative approaches, chemometric models containing HSI histograms achieved the best results, because this is very suitable in situations where there is a need to separate the chromaticity from the intensity. In other words, the opacity of the sample surfaces increases with increasing fat content. PLS/HSI achieved the best quantification result with a R2 of 0.95, RMSEP of 2.01% w w−1, REP of 7.26% w w−1 and RPD of 4.47 in the prediction set, while SPA-LDA/Grayscale + HSI reached the most satisfactory in the test set with only one misclassified sample. Therefore, the proposed methodologies represent excellent alternatives to conventional Soxhlet extraction method, since they follow the primary principles of Green Analytical Chemistry, avoiding waste generation, besides not using either chemical reagents or solvents. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02-19 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/109204 Fernandes, David Douglas de Sousa; Romeo, Florencia; Krepper, Gabriela; Di Nezio, Maria Susana; Pistonesi, Marcelo Fabian; et al.; Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools; Elsevier Science; LWT - Food Science and Technology; 100; 19-2-2019; 20-27 0023-6438 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/109204 |
identifier_str_mv |
Fernandes, David Douglas de Sousa; Romeo, Florencia; Krepper, Gabriela; Di Nezio, Maria Susana; Pistonesi, Marcelo Fabian; et al.; Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools; Elsevier Science; LWT - Food Science and Technology; 100; 19-2-2019; 20-27 0023-6438 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0023643818308806 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lwt.2018.10.034 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614390912909312 |
score |
13.070432 |