Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS)
- Autores
- Krepper, Gabriela; Romeo, Florencia; Fernandes, David Douglas de Sousa; Diniz, Paulo Henrique Gonçalves Dias; Araújo, Mário César Ugulino de; Di Nezio, Maria Susana; Pistonesi, Marcelo Fabian; Centurión, María Eugenia
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Determining fat content in hamburgers is very important to minimize or control the negative effects of fat on human health, effects such as cardiovascular diseases and obesity, which are caused by the high consumption of saturated fatty acids and cholesterol. This study proposed an alternative analytical method based on Near Infrared Spectroscopy (NIR) and Successive Projections Algorithm for interval selection in Partial Least Squares regression (iSPA-PLS) for fat content determination in commercial chicken hamburgers. For this, 70 hamburger samples with a fat content ranging from 14.27 to 32.12 mg kg− 1 were prepared based on the upper limit recommended by the Argentinean Food Codex, which is 20% (w w− 1). NIR spectra were then recorded and then preprocessed by applying different approaches: base line correction, SNV, MSC, and Savitzky-Golay smoothing. For comparison, full-spectrum PLS and the Interval PLS are also used. The best performance for the prediction set was obtained for the first derivative Savitzky-Golay smoothing with a second-order polynomial and window size of 19 points, achieving a coefficient of correlation of 0.94, RMSEP of 1.59 mg kg− 1, REP of 7.69% and RPD of 3.02. The proposed methodology represents an excellent alternative to the conventional Soxhlet extraction method, since waste generation is avoided, yet without the use of either chemical reagents or solvents, which follows the primary principles of Green Chemistry. The new method was successfully applied to chicken hamburger analysis, and the results agreed with those with reference values at a 95% confidence level, making it very attractive for routine analysis.
Fil: Krepper, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Romeo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Fernandes, David Douglas de Sousa. Universidade Federal da Paraíba; Brasil
Fil: Diniz, Paulo Henrique Gonçalves Dias. Universidade Federal do Oeste da Bahia; Brasil
Fil: Araújo, Mário César Ugulino de. Universidade Federal da Paraíba; Brasil
Fil: Di Nezio, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Centurión, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina - Materia
-
FAT
HAMBURGERS
INTERVAL SELECTION
NIR SPECTROSCOPY
PARTIAL LEAST SQUARES
SUCCESSIVE PROJECTIONS ALGORITHM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87421
Ver los metadatos del registro completo
id |
CONICETDig_13a91e0312b601b10c22f579e8865c4f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87421 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS)Krepper, GabrielaRomeo, FlorenciaFernandes, David Douglas de SousaDiniz, Paulo Henrique Gonçalves DiasAraújo, Mário César Ugulino deDi Nezio, Maria SusanaPistonesi, Marcelo FabianCenturión, María EugeniaFATHAMBURGERSINTERVAL SELECTIONNIR SPECTROSCOPYPARTIAL LEAST SQUARESSUCCESSIVE PROJECTIONS ALGORITHMhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Determining fat content in hamburgers is very important to minimize or control the negative effects of fat on human health, effects such as cardiovascular diseases and obesity, which are caused by the high consumption of saturated fatty acids and cholesterol. This study proposed an alternative analytical method based on Near Infrared Spectroscopy (NIR) and Successive Projections Algorithm for interval selection in Partial Least Squares regression (iSPA-PLS) for fat content determination in commercial chicken hamburgers. For this, 70 hamburger samples with a fat content ranging from 14.27 to 32.12 mg kg− 1 were prepared based on the upper limit recommended by the Argentinean Food Codex, which is 20% (w w− 1). NIR spectra were then recorded and then preprocessed by applying different approaches: base line correction, SNV, MSC, and Savitzky-Golay smoothing. For comparison, full-spectrum PLS and the Interval PLS are also used. The best performance for the prediction set was obtained for the first derivative Savitzky-Golay smoothing with a second-order polynomial and window size of 19 points, achieving a coefficient of correlation of 0.94, RMSEP of 1.59 mg kg− 1, REP of 7.69% and RPD of 3.02. The proposed methodology represents an excellent alternative to the conventional Soxhlet extraction method, since waste generation is avoided, yet without the use of either chemical reagents or solvents, which follows the primary principles of Green Chemistry. The new method was successfully applied to chicken hamburger analysis, and the results agreed with those with reference values at a 95% confidence level, making it very attractive for routine analysis.Fil: Krepper, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Romeo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Fernandes, David Douglas de Sousa. Universidade Federal da Paraíba; BrasilFil: Diniz, Paulo Henrique Gonçalves Dias. Universidade Federal do Oeste da Bahia; BrasilFil: Araújo, Mário César Ugulino de. Universidade Federal da Paraíba; BrasilFil: Di Nezio, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Centurión, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaPergamon-Elsevier Science Ltd2018-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87421Krepper, Gabriela; Romeo, Florencia; Fernandes, David Douglas de Sousa; Diniz, Paulo Henrique Gonçalves Dias; Araújo, Mário César Ugulino de; et al.; Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS); Pergamon-Elsevier Science Ltd; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 189; 15-1-2018; 300-3061386-1425CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1386142517306753info:eu-repo/semantics/altIdentifier/doi/10.1016/j.saa.2017.08.046info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:17Zoai:ri.conicet.gov.ar:11336/87421instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:17.347CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS) |
title |
Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS) |
spellingShingle |
Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS) Krepper, Gabriela FAT HAMBURGERS INTERVAL SELECTION NIR SPECTROSCOPY PARTIAL LEAST SQUARES SUCCESSIVE PROJECTIONS ALGORITHM |
title_short |
Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS) |
title_full |
Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS) |
title_fullStr |
Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS) |
title_full_unstemmed |
Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS) |
title_sort |
Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS) |
dc.creator.none.fl_str_mv |
Krepper, Gabriela Romeo, Florencia Fernandes, David Douglas de Sousa Diniz, Paulo Henrique Gonçalves Dias Araújo, Mário César Ugulino de Di Nezio, Maria Susana Pistonesi, Marcelo Fabian Centurión, María Eugenia |
author |
Krepper, Gabriela |
author_facet |
Krepper, Gabriela Romeo, Florencia Fernandes, David Douglas de Sousa Diniz, Paulo Henrique Gonçalves Dias Araújo, Mário César Ugulino de Di Nezio, Maria Susana Pistonesi, Marcelo Fabian Centurión, María Eugenia |
author_role |
author |
author2 |
Romeo, Florencia Fernandes, David Douglas de Sousa Diniz, Paulo Henrique Gonçalves Dias Araújo, Mário César Ugulino de Di Nezio, Maria Susana Pistonesi, Marcelo Fabian Centurión, María Eugenia |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
FAT HAMBURGERS INTERVAL SELECTION NIR SPECTROSCOPY PARTIAL LEAST SQUARES SUCCESSIVE PROJECTIONS ALGORITHM |
topic |
FAT HAMBURGERS INTERVAL SELECTION NIR SPECTROSCOPY PARTIAL LEAST SQUARES SUCCESSIVE PROJECTIONS ALGORITHM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Determining fat content in hamburgers is very important to minimize or control the negative effects of fat on human health, effects such as cardiovascular diseases and obesity, which are caused by the high consumption of saturated fatty acids and cholesterol. This study proposed an alternative analytical method based on Near Infrared Spectroscopy (NIR) and Successive Projections Algorithm for interval selection in Partial Least Squares regression (iSPA-PLS) for fat content determination in commercial chicken hamburgers. For this, 70 hamburger samples with a fat content ranging from 14.27 to 32.12 mg kg− 1 were prepared based on the upper limit recommended by the Argentinean Food Codex, which is 20% (w w− 1). NIR spectra were then recorded and then preprocessed by applying different approaches: base line correction, SNV, MSC, and Savitzky-Golay smoothing. For comparison, full-spectrum PLS and the Interval PLS are also used. The best performance for the prediction set was obtained for the first derivative Savitzky-Golay smoothing with a second-order polynomial and window size of 19 points, achieving a coefficient of correlation of 0.94, RMSEP of 1.59 mg kg− 1, REP of 7.69% and RPD of 3.02. The proposed methodology represents an excellent alternative to the conventional Soxhlet extraction method, since waste generation is avoided, yet without the use of either chemical reagents or solvents, which follows the primary principles of Green Chemistry. The new method was successfully applied to chicken hamburger analysis, and the results agreed with those with reference values at a 95% confidence level, making it very attractive for routine analysis. Fil: Krepper, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Romeo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Fernandes, David Douglas de Sousa. Universidade Federal da Paraíba; Brasil Fil: Diniz, Paulo Henrique Gonçalves Dias. Universidade Federal do Oeste da Bahia; Brasil Fil: Araújo, Mário César Ugulino de. Universidade Federal da Paraíba; Brasil Fil: Di Nezio, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Centurión, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina |
description |
Determining fat content in hamburgers is very important to minimize or control the negative effects of fat on human health, effects such as cardiovascular diseases and obesity, which are caused by the high consumption of saturated fatty acids and cholesterol. This study proposed an alternative analytical method based on Near Infrared Spectroscopy (NIR) and Successive Projections Algorithm for interval selection in Partial Least Squares regression (iSPA-PLS) for fat content determination in commercial chicken hamburgers. For this, 70 hamburger samples with a fat content ranging from 14.27 to 32.12 mg kg− 1 were prepared based on the upper limit recommended by the Argentinean Food Codex, which is 20% (w w− 1). NIR spectra were then recorded and then preprocessed by applying different approaches: base line correction, SNV, MSC, and Savitzky-Golay smoothing. For comparison, full-spectrum PLS and the Interval PLS are also used. The best performance for the prediction set was obtained for the first derivative Savitzky-Golay smoothing with a second-order polynomial and window size of 19 points, achieving a coefficient of correlation of 0.94, RMSEP of 1.59 mg kg− 1, REP of 7.69% and RPD of 3.02. The proposed methodology represents an excellent alternative to the conventional Soxhlet extraction method, since waste generation is avoided, yet without the use of either chemical reagents or solvents, which follows the primary principles of Green Chemistry. The new method was successfully applied to chicken hamburger analysis, and the results agreed with those with reference values at a 95% confidence level, making it very attractive for routine analysis. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87421 Krepper, Gabriela; Romeo, Florencia; Fernandes, David Douglas de Sousa; Diniz, Paulo Henrique Gonçalves Dias; Araújo, Mário César Ugulino de; et al.; Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS); Pergamon-Elsevier Science Ltd; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 189; 15-1-2018; 300-306 1386-1425 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87421 |
identifier_str_mv |
Krepper, Gabriela; Romeo, Florencia; Fernandes, David Douglas de Sousa; Diniz, Paulo Henrique Gonçalves Dias; Araújo, Mário César Ugulino de; et al.; Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS); Pergamon-Elsevier Science Ltd; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 189; 15-1-2018; 300-306 1386-1425 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1386142517306753 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.saa.2017.08.046 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268847853273088 |
score |
13.13397 |