Limits for Monge-Kantorovich mass transport problems

Autores
Azorero, J.G.; Manfredi, J.J.; Peral, I.; Rossi, J.D.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study the limit of Monge-Kantorovich mass transfer problems when the involved measures are supported in a small strip near the boundary of a bounded smooth domain, Ω. Given two absolutely continues measures (with respect to the surface measure) supported on the boundary ∂Ω, by performing a suitable extension of the measures to a strip of width ε near the boundary of the domain Ω we consider the mass transfer problem for the extensions. Then we study the limit as ε goes to zero of the Kantorovich potentials for the extensions and obtain that it coincides with a solution of the original mass transfer problem. Moreover we look for the possible approximations of these problems by solutions to equations involving the p-Laplacian for large values of p.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Commun. Pure Appl. Anal. 2008;7(4):853-865
Materia
Mass transport
Neumann boundary conditions
Quasilinear elliptic equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_15340392_v7_n4_p853_Azorero

id BDUBAFCEN_83393d57a0b2735b452d9cfaa3847158
oai_identifier_str paperaa:paper_15340392_v7_n4_p853_Azorero
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Limits for Monge-Kantorovich mass transport problemsAzorero, J.G.Manfredi, J.J.Peral, I.Rossi, J.D.Mass transportNeumann boundary conditionsQuasilinear elliptic equationsIn this paper we study the limit of Monge-Kantorovich mass transfer problems when the involved measures are supported in a small strip near the boundary of a bounded smooth domain, Ω. Given two absolutely continues measures (with respect to the surface measure) supported on the boundary ∂Ω, by performing a suitable extension of the measures to a strip of width ε near the boundary of the domain Ω we consider the mass transfer problem for the extensions. Then we study the limit as ε goes to zero of the Kantorovich potentials for the extensions and obtain that it coincides with a solution of the original mass transfer problem. Moreover we look for the possible approximations of these problems by solutions to equations involving the p-Laplacian for large values of p.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_15340392_v7_n4_p853_AzoreroCommun. Pure Appl. Anal. 2008;7(4):853-865reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-18T10:09:28Zpaperaa:paper_15340392_v7_n4_p853_AzoreroInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:29.768Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Limits for Monge-Kantorovich mass transport problems
title Limits for Monge-Kantorovich mass transport problems
spellingShingle Limits for Monge-Kantorovich mass transport problems
Azorero, J.G.
Mass transport
Neumann boundary conditions
Quasilinear elliptic equations
title_short Limits for Monge-Kantorovich mass transport problems
title_full Limits for Monge-Kantorovich mass transport problems
title_fullStr Limits for Monge-Kantorovich mass transport problems
title_full_unstemmed Limits for Monge-Kantorovich mass transport problems
title_sort Limits for Monge-Kantorovich mass transport problems
dc.creator.none.fl_str_mv Azorero, J.G.
Manfredi, J.J.
Peral, I.
Rossi, J.D.
author Azorero, J.G.
author_facet Azorero, J.G.
Manfredi, J.J.
Peral, I.
Rossi, J.D.
author_role author
author2 Manfredi, J.J.
Peral, I.
Rossi, J.D.
author2_role author
author
author
dc.subject.none.fl_str_mv Mass transport
Neumann boundary conditions
Quasilinear elliptic equations
topic Mass transport
Neumann boundary conditions
Quasilinear elliptic equations
dc.description.none.fl_txt_mv In this paper we study the limit of Monge-Kantorovich mass transfer problems when the involved measures are supported in a small strip near the boundary of a bounded smooth domain, Ω. Given two absolutely continues measures (with respect to the surface measure) supported on the boundary ∂Ω, by performing a suitable extension of the measures to a strip of width ε near the boundary of the domain Ω we consider the mass transfer problem for the extensions. Then we study the limit as ε goes to zero of the Kantorovich potentials for the extensions and obtain that it coincides with a solution of the original mass transfer problem. Moreover we look for the possible approximations of these problems by solutions to equations involving the p-Laplacian for large values of p.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper we study the limit of Monge-Kantorovich mass transfer problems when the involved measures are supported in a small strip near the boundary of a bounded smooth domain, Ω. Given two absolutely continues measures (with respect to the surface measure) supported on the boundary ∂Ω, by performing a suitable extension of the measures to a strip of width ε near the boundary of the domain Ω we consider the mass transfer problem for the extensions. Then we study the limit as ε goes to zero of the Kantorovich potentials for the extensions and obtain that it coincides with a solution of the original mass transfer problem. Moreover we look for the possible approximations of these problems by solutions to equations involving the p-Laplacian for large values of p.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_15340392_v7_n4_p853_Azorero
url http://hdl.handle.net/20.500.12110/paper_15340392_v7_n4_p853_Azorero
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Commun. Pure Appl. Anal. 2008;7(4):853-865
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1843608738782511104
score 13.000565