Limits for Monge-Kantorovich mass transport problems
- Autores
- Azorero, J.G.; Manfredi, J.J.; Peral, I.; Rossi, J.D.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study the limit of Monge-Kantorovich mass transfer problems when the involved measures are supported in a small strip near the boundary of a bounded smooth domain, Ω. Given two absolutely continues measures (with respect to the surface measure) supported on the boundary ∂Ω, by performing a suitable extension of the measures to a strip of width ε near the boundary of the domain Ω we consider the mass transfer problem for the extensions. Then we study the limit as ε goes to zero of the Kantorovich potentials for the extensions and obtain that it coincides with a solution of the original mass transfer problem. Moreover we look for the possible approximations of these problems by solutions to equations involving the p-Laplacian for large values of p.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Commun. Pure Appl. Anal. 2008;7(4):853-865
- Materia
-
Mass transport
Neumann boundary conditions
Quasilinear elliptic equations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_15340392_v7_n4_p853_Azorero
Ver los metadatos del registro completo
id |
BDUBAFCEN_83393d57a0b2735b452d9cfaa3847158 |
---|---|
oai_identifier_str |
paperaa:paper_15340392_v7_n4_p853_Azorero |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Limits for Monge-Kantorovich mass transport problemsAzorero, J.G.Manfredi, J.J.Peral, I.Rossi, J.D.Mass transportNeumann boundary conditionsQuasilinear elliptic equationsIn this paper we study the limit of Monge-Kantorovich mass transfer problems when the involved measures are supported in a small strip near the boundary of a bounded smooth domain, Ω. Given two absolutely continues measures (with respect to the surface measure) supported on the boundary ∂Ω, by performing a suitable extension of the measures to a strip of width ε near the boundary of the domain Ω we consider the mass transfer problem for the extensions. Then we study the limit as ε goes to zero of the Kantorovich potentials for the extensions and obtain that it coincides with a solution of the original mass transfer problem. Moreover we look for the possible approximations of these problems by solutions to equations involving the p-Laplacian for large values of p.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_15340392_v7_n4_p853_AzoreroCommun. Pure Appl. Anal. 2008;7(4):853-865reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-18T10:09:28Zpaperaa:paper_15340392_v7_n4_p853_AzoreroInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:29.768Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Limits for Monge-Kantorovich mass transport problems |
title |
Limits for Monge-Kantorovich mass transport problems |
spellingShingle |
Limits for Monge-Kantorovich mass transport problems Azorero, J.G. Mass transport Neumann boundary conditions Quasilinear elliptic equations |
title_short |
Limits for Monge-Kantorovich mass transport problems |
title_full |
Limits for Monge-Kantorovich mass transport problems |
title_fullStr |
Limits for Monge-Kantorovich mass transport problems |
title_full_unstemmed |
Limits for Monge-Kantorovich mass transport problems |
title_sort |
Limits for Monge-Kantorovich mass transport problems |
dc.creator.none.fl_str_mv |
Azorero, J.G. Manfredi, J.J. Peral, I. Rossi, J.D. |
author |
Azorero, J.G. |
author_facet |
Azorero, J.G. Manfredi, J.J. Peral, I. Rossi, J.D. |
author_role |
author |
author2 |
Manfredi, J.J. Peral, I. Rossi, J.D. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Mass transport Neumann boundary conditions Quasilinear elliptic equations |
topic |
Mass transport Neumann boundary conditions Quasilinear elliptic equations |
dc.description.none.fl_txt_mv |
In this paper we study the limit of Monge-Kantorovich mass transfer problems when the involved measures are supported in a small strip near the boundary of a bounded smooth domain, Ω. Given two absolutely continues measures (with respect to the surface measure) supported on the boundary ∂Ω, by performing a suitable extension of the measures to a strip of width ε near the boundary of the domain Ω we consider the mass transfer problem for the extensions. Then we study the limit as ε goes to zero of the Kantorovich potentials for the extensions and obtain that it coincides with a solution of the original mass transfer problem. Moreover we look for the possible approximations of these problems by solutions to equations involving the p-Laplacian for large values of p. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this paper we study the limit of Monge-Kantorovich mass transfer problems when the involved measures are supported in a small strip near the boundary of a bounded smooth domain, Ω. Given two absolutely continues measures (with respect to the surface measure) supported on the boundary ∂Ω, by performing a suitable extension of the measures to a strip of width ε near the boundary of the domain Ω we consider the mass transfer problem for the extensions. Then we study the limit as ε goes to zero of the Kantorovich potentials for the extensions and obtain that it coincides with a solution of the original mass transfer problem. Moreover we look for the possible approximations of these problems by solutions to equations involving the p-Laplacian for large values of p. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_15340392_v7_n4_p853_Azorero |
url |
http://hdl.handle.net/20.500.12110/paper_15340392_v7_n4_p853_Azorero |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Commun. Pure Appl. Anal. 2008;7(4):853-865 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1843608738782511104 |
score |
13.000565 |