Robust functional linear regression based on splines
- Autores
- Maronna, Ricardo A.; Yohai, Victor Jaime
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many existing methods for functional regression are based on the minimization of an L2 norm of the residuals and are therefore sensitive to atypical observations, which may affect the predictive power and/or the smoothness of the resulting estimate. A robust version of a spline-based estimate is presented, which has the form of an MM estimate, where the L2 loss is replaced by a bounded loss function. The estimate can be computed by a fast iterative algorithm. The proposed approach is compared, with favorable results, to the one based on L2 and to both classical and robust Partial Least Squares through an example with high-dimensional real data and a simulation study.
Fil: Maronna, Ricardo A.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Mm Estimate
Natural Splines
Robust Ridge Estimator - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15929
Ver los metadatos del registro completo
id |
CONICETDig_4e46aac96be83558a1e4087486931431 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15929 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust functional linear regression based on splinesMaronna, Ricardo A.Yohai, Victor JaimeMm EstimateNatural SplinesRobust Ridge Estimatorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Many existing methods for functional regression are based on the minimization of an L2 norm of the residuals and are therefore sensitive to atypical observations, which may affect the predictive power and/or the smoothness of the resulting estimate. A robust version of a spline-based estimate is presented, which has the form of an MM estimate, where the L2 loss is replaced by a bounded loss function. The estimate can be computed by a fast iterative algorithm. The proposed approach is compared, with favorable results, to the one based on L2 and to both classical and robust Partial Least Squares through an example with high-dimensional real data and a simulation study.Fil: Maronna, Ricardo A.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15929Maronna, Ricardo A.; Yohai, Victor Jaime; Robust functional linear regression based on splines; Elsevier Science; Computational Statistics And Data Analysis; 65; 9-2013; 46-550167-9473enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2011.11.014info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947311004117info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:19Zoai:ri.conicet.gov.ar:11336/15929instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:20.101CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust functional linear regression based on splines |
title |
Robust functional linear regression based on splines |
spellingShingle |
Robust functional linear regression based on splines Maronna, Ricardo A. Mm Estimate Natural Splines Robust Ridge Estimator |
title_short |
Robust functional linear regression based on splines |
title_full |
Robust functional linear regression based on splines |
title_fullStr |
Robust functional linear regression based on splines |
title_full_unstemmed |
Robust functional linear regression based on splines |
title_sort |
Robust functional linear regression based on splines |
dc.creator.none.fl_str_mv |
Maronna, Ricardo A. Yohai, Victor Jaime |
author |
Maronna, Ricardo A. |
author_facet |
Maronna, Ricardo A. Yohai, Victor Jaime |
author_role |
author |
author2 |
Yohai, Victor Jaime |
author2_role |
author |
dc.subject.none.fl_str_mv |
Mm Estimate Natural Splines Robust Ridge Estimator |
topic |
Mm Estimate Natural Splines Robust Ridge Estimator |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many existing methods for functional regression are based on the minimization of an L2 norm of the residuals and are therefore sensitive to atypical observations, which may affect the predictive power and/or the smoothness of the resulting estimate. A robust version of a spline-based estimate is presented, which has the form of an MM estimate, where the L2 loss is replaced by a bounded loss function. The estimate can be computed by a fast iterative algorithm. The proposed approach is compared, with favorable results, to the one based on L2 and to both classical and robust Partial Least Squares through an example with high-dimensional real data and a simulation study. Fil: Maronna, Ricardo A.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Many existing methods for functional regression are based on the minimization of an L2 norm of the residuals and are therefore sensitive to atypical observations, which may affect the predictive power and/or the smoothness of the resulting estimate. A robust version of a spline-based estimate is presented, which has the form of an MM estimate, where the L2 loss is replaced by a bounded loss function. The estimate can be computed by a fast iterative algorithm. The proposed approach is compared, with favorable results, to the one based on L2 and to both classical and robust Partial Least Squares through an example with high-dimensional real data and a simulation study. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15929 Maronna, Ricardo A.; Yohai, Victor Jaime; Robust functional linear regression based on splines; Elsevier Science; Computational Statistics And Data Analysis; 65; 9-2013; 46-55 0167-9473 |
url |
http://hdl.handle.net/11336/15929 |
identifier_str_mv |
Maronna, Ricardo A.; Yohai, Victor Jaime; Robust functional linear regression based on splines; Elsevier Science; Computational Statistics And Data Analysis; 65; 9-2013; 46-55 0167-9473 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2011.11.014 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947311004117 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613761046937600 |
score |
13.070432 |