Obtainment of the density of states in the band tails of hydrogenated amorphous silicon
- Autores
- Kopprio, Leonardo Hugo; Longeaud, Christophe; Schmidt, Javier Alejandro
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we present two new pairs of formulas to obtain a spectroscopy of the density of states (DOS) in each band tail of hydrogenated amorphous silicon (a-Si:H) from photoconductivity-based measurements. The formulas are based on the knowledge of the small-signal recombination lifetime τ′, the characteristic decay time of the concentration of trapped carriers generated in excess by the illumination, and that can be measured by methods like the Oscillating Photocarrier Grating (OPG) or Moving Grating Technique (MGT). First, we deduce the formulas and test their accuracy by numerical simulations using typical a-Si:H parameters. Next, we characterize an a-Si:H sample using well-known methods, like Fourier transform photocurrent spectroscopy to evaluate the valence band tail and modulated photoconductivity to measure the conduction band tail. We also performed measurements of steady-state photoconductivity, steady-state photocurrent grating and MGT, for a range of generation rates. From these measurements - and taking typical values for the capture coefficients, the extended states mobilities and the DOS at the band edges - we apply the new formulas to get the band tails. We find that the results obtained from the application of our formulas are in good agreement with those found with the traditional methods for both band tails. Moreover, we show that MGT/OPG measurement to get τ′ can be avoided if one of the band tails is measured by one of the traditional methods, since the known band tail can be used to evaluate τ′ with one pair of equations, and then the other pair can be applied to get the other band tail.
Fil: Kopprio, Leonardo Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Longeaud, Christophe. Universite Pierre et Marie Curie; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina - Materia
-
PHOTOCONDUCTIVITY
AMORPHOUS SILICON
DENSITY OF STATES
CONDENSED
SOLAR CELLS
BAND STRUCTURE
COMPUTER SIMULATION - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37954
Ver los metadatos del registro completo
id |
CONICETDig_1c26e3d7d028de059daaa6fcf5ae62c6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37954 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Obtainment of the density of states in the band tails of hydrogenated amorphous siliconKopprio, Leonardo HugoLongeaud, ChristopheSchmidt, Javier AlejandroPHOTOCONDUCTIVITYAMORPHOUS SILICONDENSITY OF STATESCONDENSEDSOLAR CELLSBAND STRUCTURECOMPUTER SIMULATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work, we present two new pairs of formulas to obtain a spectroscopy of the density of states (DOS) in each band tail of hydrogenated amorphous silicon (a-Si:H) from photoconductivity-based measurements. The formulas are based on the knowledge of the small-signal recombination lifetime τ′, the characteristic decay time of the concentration of trapped carriers generated in excess by the illumination, and that can be measured by methods like the Oscillating Photocarrier Grating (OPG) or Moving Grating Technique (MGT). First, we deduce the formulas and test their accuracy by numerical simulations using typical a-Si:H parameters. Next, we characterize an a-Si:H sample using well-known methods, like Fourier transform photocurrent spectroscopy to evaluate the valence band tail and modulated photoconductivity to measure the conduction band tail. We also performed measurements of steady-state photoconductivity, steady-state photocurrent grating and MGT, for a range of generation rates. From these measurements - and taking typical values for the capture coefficients, the extended states mobilities and the DOS at the band edges - we apply the new formulas to get the band tails. We find that the results obtained from the application of our formulas are in good agreement with those found with the traditional methods for both band tails. Moreover, we show that MGT/OPG measurement to get τ′ can be avoided if one of the band tails is measured by one of the traditional methods, since the known band tail can be used to evaluate τ′ with one pair of equations, and then the other pair can be applied to get the other band tail.Fil: Kopprio, Leonardo Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Longeaud, Christophe. Universite Pierre et Marie Curie; Francia. Centre National de la Recherche Scientifique; FranciaFil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaAmerican Institute of Physics2017-08info:eu-repo/date/embargoEnd/2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37954Kopprio, Leonardo Hugo; Longeaud, Christophe; Schmidt, Javier Alejandro; Obtainment of the density of states in the band tails of hydrogenated amorphous silicon; American Institute of Physics; Journal of Applied Physics; 122; 8; 8-2017; 857021-85702100021-8979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4999626info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4999626info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:35Zoai:ri.conicet.gov.ar:11336/37954instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:35.479CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Obtainment of the density of states in the band tails of hydrogenated amorphous silicon |
title |
Obtainment of the density of states in the band tails of hydrogenated amorphous silicon |
spellingShingle |
Obtainment of the density of states in the band tails of hydrogenated amorphous silicon Kopprio, Leonardo Hugo PHOTOCONDUCTIVITY AMORPHOUS SILICON DENSITY OF STATES CONDENSED SOLAR CELLS BAND STRUCTURE COMPUTER SIMULATION |
title_short |
Obtainment of the density of states in the band tails of hydrogenated amorphous silicon |
title_full |
Obtainment of the density of states in the band tails of hydrogenated amorphous silicon |
title_fullStr |
Obtainment of the density of states in the band tails of hydrogenated amorphous silicon |
title_full_unstemmed |
Obtainment of the density of states in the band tails of hydrogenated amorphous silicon |
title_sort |
Obtainment of the density of states in the band tails of hydrogenated amorphous silicon |
dc.creator.none.fl_str_mv |
Kopprio, Leonardo Hugo Longeaud, Christophe Schmidt, Javier Alejandro |
author |
Kopprio, Leonardo Hugo |
author_facet |
Kopprio, Leonardo Hugo Longeaud, Christophe Schmidt, Javier Alejandro |
author_role |
author |
author2 |
Longeaud, Christophe Schmidt, Javier Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
PHOTOCONDUCTIVITY AMORPHOUS SILICON DENSITY OF STATES CONDENSED SOLAR CELLS BAND STRUCTURE COMPUTER SIMULATION |
topic |
PHOTOCONDUCTIVITY AMORPHOUS SILICON DENSITY OF STATES CONDENSED SOLAR CELLS BAND STRUCTURE COMPUTER SIMULATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we present two new pairs of formulas to obtain a spectroscopy of the density of states (DOS) in each band tail of hydrogenated amorphous silicon (a-Si:H) from photoconductivity-based measurements. The formulas are based on the knowledge of the small-signal recombination lifetime τ′, the characteristic decay time of the concentration of trapped carriers generated in excess by the illumination, and that can be measured by methods like the Oscillating Photocarrier Grating (OPG) or Moving Grating Technique (MGT). First, we deduce the formulas and test their accuracy by numerical simulations using typical a-Si:H parameters. Next, we characterize an a-Si:H sample using well-known methods, like Fourier transform photocurrent spectroscopy to evaluate the valence band tail and modulated photoconductivity to measure the conduction band tail. We also performed measurements of steady-state photoconductivity, steady-state photocurrent grating and MGT, for a range of generation rates. From these measurements - and taking typical values for the capture coefficients, the extended states mobilities and the DOS at the band edges - we apply the new formulas to get the band tails. We find that the results obtained from the application of our formulas are in good agreement with those found with the traditional methods for both band tails. Moreover, we show that MGT/OPG measurement to get τ′ can be avoided if one of the band tails is measured by one of the traditional methods, since the known band tail can be used to evaluate τ′ with one pair of equations, and then the other pair can be applied to get the other band tail. Fil: Kopprio, Leonardo Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina Fil: Longeaud, Christophe. Universite Pierre et Marie Curie; Francia. Centre National de la Recherche Scientifique; Francia Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina |
description |
In this work, we present two new pairs of formulas to obtain a spectroscopy of the density of states (DOS) in each band tail of hydrogenated amorphous silicon (a-Si:H) from photoconductivity-based measurements. The formulas are based on the knowledge of the small-signal recombination lifetime τ′, the characteristic decay time of the concentration of trapped carriers generated in excess by the illumination, and that can be measured by methods like the Oscillating Photocarrier Grating (OPG) or Moving Grating Technique (MGT). First, we deduce the formulas and test their accuracy by numerical simulations using typical a-Si:H parameters. Next, we characterize an a-Si:H sample using well-known methods, like Fourier transform photocurrent spectroscopy to evaluate the valence band tail and modulated photoconductivity to measure the conduction band tail. We also performed measurements of steady-state photoconductivity, steady-state photocurrent grating and MGT, for a range of generation rates. From these measurements - and taking typical values for the capture coefficients, the extended states mobilities and the DOS at the band edges - we apply the new formulas to get the band tails. We find that the results obtained from the application of our formulas are in good agreement with those found with the traditional methods for both band tails. Moreover, we show that MGT/OPG measurement to get τ′ can be avoided if one of the band tails is measured by one of the traditional methods, since the known band tail can be used to evaluate τ′ with one pair of equations, and then the other pair can be applied to get the other band tail. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 info:eu-repo/date/embargoEnd/2018-09-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37954 Kopprio, Leonardo Hugo; Longeaud, Christophe; Schmidt, Javier Alejandro; Obtainment of the density of states in the band tails of hydrogenated amorphous silicon; American Institute of Physics; Journal of Applied Physics; 122; 8; 8-2017; 857021-8570210 0021-8979 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37954 |
identifier_str_mv |
Kopprio, Leonardo Hugo; Longeaud, Christophe; Schmidt, Javier Alejandro; Obtainment of the density of states in the band tails of hydrogenated amorphous silicon; American Institute of Physics; Journal of Applied Physics; 122; 8; 8-2017; 857021-8570210 0021-8979 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4999626 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4999626 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614204567322624 |
score |
13.070432 |