The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform
- Autores
- Bernardis, Ana Lucia; Martín Reyes, F.J.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently, Sarrión and the authors gave a sufficient condition on invertible Lamperti operators on Lp which guarantees the convergence in the Cesàro-α sense of the ergodic averages and the ergodic Hilbert transform for all f ∈ Lp with p > 1/(1 + α) and −1 < α ≤ 0. The result does not hold for the space L1/(1 + α). In this paper we give a positive result for the smaller Lorentz space L1/(1 + α),1.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, F.J.. Universidad de Málaga; España - Materia
- Cesàro-α convergence
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98755
Ver los metadatos del registro completo
id |
CONICETDig_d97e219ab8ed96856cf4972bc7566a93 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98755 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transformBernardis, Ana LuciaMartín Reyes, F.J.Cesàro-α convergencehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently, Sarrión and the authors gave a sufficient condition on invertible Lamperti operators on Lp which guarantees the convergence in the Cesàro-α sense of the ergodic averages and the ergodic Hilbert transform for all f ∈ Lp with p > 1/(1 + α) and −1 < α ≤ 0. The result does not hold for the space L1/(1 + α). In this paper we give a positive result for the smaller Lorentz space L1/(1 + α),1.Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín Reyes, F.J.. Universidad de Málaga; EspañaRoyal Society of Edinburgh2007-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98755Bernardis, Ana Lucia; Martín Reyes, F.J.; The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform; Royal Society of Edinburgh; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 130; 2; 7-2007; 225-2370308-2105CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0308210500000123info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:24Zoai:ri.conicet.gov.ar:11336/98755instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:24.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform |
title |
The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform |
spellingShingle |
The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform Bernardis, Ana Lucia Cesàro-α convergence |
title_short |
The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform |
title_full |
The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform |
title_fullStr |
The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform |
title_full_unstemmed |
The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform |
title_sort |
The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform |
dc.creator.none.fl_str_mv |
Bernardis, Ana Lucia Martín Reyes, F.J. |
author |
Bernardis, Ana Lucia |
author_facet |
Bernardis, Ana Lucia Martín Reyes, F.J. |
author_role |
author |
author2 |
Martín Reyes, F.J. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Cesàro-α convergence |
topic |
Cesàro-α convergence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recently, Sarrión and the authors gave a sufficient condition on invertible Lamperti operators on Lp which guarantees the convergence in the Cesàro-α sense of the ergodic averages and the ergodic Hilbert transform for all f ∈ Lp with p > 1/(1 + α) and −1 < α ≤ 0. The result does not hold for the space L1/(1 + α). In this paper we give a positive result for the smaller Lorentz space L1/(1 + α),1. Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Martín Reyes, F.J.. Universidad de Málaga; España |
description |
Recently, Sarrión and the authors gave a sufficient condition on invertible Lamperti operators on Lp which guarantees the convergence in the Cesàro-α sense of the ergodic averages and the ergodic Hilbert transform for all f ∈ Lp with p > 1/(1 + α) and −1 < α ≤ 0. The result does not hold for the space L1/(1 + α). In this paper we give a positive result for the smaller Lorentz space L1/(1 + α),1. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98755 Bernardis, Ana Lucia; Martín Reyes, F.J.; The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform; Royal Society of Edinburgh; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 130; 2; 7-2007; 225-237 0308-2105 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98755 |
identifier_str_mv |
Bernardis, Ana Lucia; Martín Reyes, F.J.; The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform; Royal Society of Edinburgh; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 130; 2; 7-2007; 225-237 0308-2105 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0308210500000123 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Edinburgh |
publisher.none.fl_str_mv |
Royal Society of Edinburgh |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613213631545344 |
score |
13.070432 |