Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze

Autores
D'andrea, Carlos; Krick, Teresa Elena Genoveva; Sombra, Martín
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nous présentons des bornes pour les degrés et hauteurs des polynômes apparaissant dans certains problèmes de géométrie algébrique effective, dont l'implicitation d'applications rationnelles et le Nullstellensatz effectif sur une variété. Notre traitement est basé sur la théorie de l'intersection arithmétique dans un produit d'espaces projectifs. Il étend au cadre arithmétique des constructions et résultats dus à Jelonek. Un rôle central est joué par la notion de hauteur canonique mixte d'une variété multiprojective. Nous étudions cette notion à l'aide de la théorie des résultants et nous montrons quelques-unes de ses propriétés de base, y compris son comportement par rapport aux intersections, projections et produits. Nous obtenons aussi des résultats analogues dans le cas d'un corps de fonctions, dont un Nullstellensatz paramétrique.
We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz.
Fil: D'andrea, Carlos. Universidad de Barcelona; España
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Sombra, Martín. Universidad de Barcelona; España
Materia
Multiprojective spaces
mixed heights of varieties
implicitization
arithmetic nullstellensatze
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14857

id CONICETDig_1a2944aeef61ae349d43377fc67df816
oai_identifier_str oai:ri.conicet.gov.ar:11336/14857
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Heights of varieties in multiprojective spaces and arithmetic NullstellensätzeD'andrea, CarlosKrick, Teresa Elena GenovevaSombra, MartínMultiprojective spacesmixed heights of varietiesimplicitizationarithmetic nullstellensatzehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Nous présentons des bornes pour les degrés et hauteurs des polynômes apparaissant dans certains problèmes de géométrie algébrique effective, dont l'implicitation d'applications rationnelles et le Nullstellensatz effectif sur une variété. Notre traitement est basé sur la théorie de l'intersection arithmétique dans un produit d'espaces projectifs. Il étend au cadre arithmétique des constructions et résultats dus à Jelonek. Un rôle central est joué par la notion de hauteur canonique mixte d'une variété multiprojective. Nous étudions cette notion à l'aide de la théorie des résultants et nous montrons quelques-unes de ses propriétés de base, y compris son comportement par rapport aux intersections, projections et produits. Nous obtenons aussi des résultats analogues dans le cas d'un corps de fonctions, dont un Nullstellensatz paramétrique.We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz.Fil: D'andrea, Carlos. Universidad de Barcelona; EspañaFil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Sombra, Martín. Universidad de Barcelona; EspañaSoc Mathematique France2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14857D'andrea, Carlos; Krick, Teresa Elena Genoveva; Sombra, Martín; Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze; Soc Mathematique France; Annales Scientifiques de L4ecole Normale Superieure; 46; 4; 6-2013; 549-6270012-9593enginfo:eu-repo/semantics/altIdentifier/url/http://smf4.emath.fr/Publications/AnnalesENS/4_46/html/ens_ann-sc_46_549-627.phpinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:16Zoai:ri.conicet.gov.ar:11336/14857instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:17.021CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
title Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
spellingShingle Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
D'andrea, Carlos
Multiprojective spaces
mixed heights of varieties
implicitization
arithmetic nullstellensatze
title_short Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
title_full Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
title_fullStr Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
title_full_unstemmed Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
title_sort Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
dc.creator.none.fl_str_mv D'andrea, Carlos
Krick, Teresa Elena Genoveva
Sombra, Martín
author D'andrea, Carlos
author_facet D'andrea, Carlos
Krick, Teresa Elena Genoveva
Sombra, Martín
author_role author
author2 Krick, Teresa Elena Genoveva
Sombra, Martín
author2_role author
author
dc.subject.none.fl_str_mv Multiprojective spaces
mixed heights of varieties
implicitization
arithmetic nullstellensatze
topic Multiprojective spaces
mixed heights of varieties
implicitization
arithmetic nullstellensatze
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nous présentons des bornes pour les degrés et hauteurs des polynômes apparaissant dans certains problèmes de géométrie algébrique effective, dont l'implicitation d'applications rationnelles et le Nullstellensatz effectif sur une variété. Notre traitement est basé sur la théorie de l'intersection arithmétique dans un produit d'espaces projectifs. Il étend au cadre arithmétique des constructions et résultats dus à Jelonek. Un rôle central est joué par la notion de hauteur canonique mixte d'une variété multiprojective. Nous étudions cette notion à l'aide de la théorie des résultants et nous montrons quelques-unes de ses propriétés de base, y compris son comportement par rapport aux intersections, projections et produits. Nous obtenons aussi des résultats analogues dans le cas d'un corps de fonctions, dont un Nullstellensatz paramétrique.
We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz.
Fil: D'andrea, Carlos. Universidad de Barcelona; España
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Sombra, Martín. Universidad de Barcelona; España
description Nous présentons des bornes pour les degrés et hauteurs des polynômes apparaissant dans certains problèmes de géométrie algébrique effective, dont l'implicitation d'applications rationnelles et le Nullstellensatz effectif sur une variété. Notre traitement est basé sur la théorie de l'intersection arithmétique dans un produit d'espaces projectifs. Il étend au cadre arithmétique des constructions et résultats dus à Jelonek. Un rôle central est joué par la notion de hauteur canonique mixte d'une variété multiprojective. Nous étudions cette notion à l'aide de la théorie des résultants et nous montrons quelques-unes de ses propriétés de base, y compris son comportement par rapport aux intersections, projections et produits. Nous obtenons aussi des résultats analogues dans le cas d'un corps de fonctions, dont un Nullstellensatz paramétrique.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14857
D'andrea, Carlos; Krick, Teresa Elena Genoveva; Sombra, Martín; Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze; Soc Mathematique France; Annales Scientifiques de L4ecole Normale Superieure; 46; 4; 6-2013; 549-627
0012-9593
url http://hdl.handle.net/11336/14857
identifier_str_mv D'andrea, Carlos; Krick, Teresa Elena Genoveva; Sombra, Martín; Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze; Soc Mathematique France; Annales Scientifiques de L4ecole Normale Superieure; 46; 4; 6-2013; 549-627
0012-9593
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://smf4.emath.fr/Publications/AnnalesENS/4_46/html/ens_ann-sc_46_549-627.php
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Soc Mathematique France
publisher.none.fl_str_mv Soc Mathematique France
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082684700327936
score 13.22299