Sparse Nullstellensatz, Resultants, and Determinants of Complexes
- Autores
- D Andrea, Carlos A; Jeronimo, Gabriela Tali
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We refine and extend a result by Tuitman on the supports of a Bézout identity satisfied by a finite sequence of sparse Laurent polynomials without common zeroes in the toric variety associated to their supports. When the number of these polynomials is one more than the dimension of the ambient space, we obtain a formula for computing the sparse resultant as the determinant of a Koszul-type complex.
Fil: D Andrea, Carlos A. Universidad de Barcelona; España
Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
HILBERT'S NULLSTELLENSATZ
SPARSE RESULTANTS
DETERMINANTS OF COMPLEXES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/271061
Ver los metadatos del registro completo
id |
CONICETDig_df070e920c797b772ec1a418612877a5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/271061 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sparse Nullstellensatz, Resultants, and Determinants of ComplexesD Andrea, Carlos AJeronimo, Gabriela TaliHILBERT'S NULLSTELLENSATZSPARSE RESULTANTSDETERMINANTS OF COMPLEXEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We refine and extend a result by Tuitman on the supports of a Bézout identity satisfied by a finite sequence of sparse Laurent polynomials without common zeroes in the toric variety associated to their supports. When the number of these polynomials is one more than the dimension of the ambient space, we obtain a formula for computing the sparse resultant as the determinant of a Koszul-type complex.Fil: D Andrea, Carlos A. Universidad de Barcelona; EspañaFil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaOxford University Press2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271061D Andrea, Carlos A; Jeronimo, Gabriela Tali; Sparse Nullstellensatz, Resultants, and Determinants of Complexes; Oxford University Press; International Mathematics Research Notices; 2025; 12; 6-2025; 1-231073-7928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2025/12/rnaf174/8171535?redirectedFrom=fulltextinfo:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnaf174info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2407.13450info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:20Zoai:ri.conicet.gov.ar:11336/271061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:20.579CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sparse Nullstellensatz, Resultants, and Determinants of Complexes |
title |
Sparse Nullstellensatz, Resultants, and Determinants of Complexes |
spellingShingle |
Sparse Nullstellensatz, Resultants, and Determinants of Complexes D Andrea, Carlos A HILBERT'S NULLSTELLENSATZ SPARSE RESULTANTS DETERMINANTS OF COMPLEXES |
title_short |
Sparse Nullstellensatz, Resultants, and Determinants of Complexes |
title_full |
Sparse Nullstellensatz, Resultants, and Determinants of Complexes |
title_fullStr |
Sparse Nullstellensatz, Resultants, and Determinants of Complexes |
title_full_unstemmed |
Sparse Nullstellensatz, Resultants, and Determinants of Complexes |
title_sort |
Sparse Nullstellensatz, Resultants, and Determinants of Complexes |
dc.creator.none.fl_str_mv |
D Andrea, Carlos A Jeronimo, Gabriela Tali |
author |
D Andrea, Carlos A |
author_facet |
D Andrea, Carlos A Jeronimo, Gabriela Tali |
author_role |
author |
author2 |
Jeronimo, Gabriela Tali |
author2_role |
author |
dc.subject.none.fl_str_mv |
HILBERT'S NULLSTELLENSATZ SPARSE RESULTANTS DETERMINANTS OF COMPLEXES |
topic |
HILBERT'S NULLSTELLENSATZ SPARSE RESULTANTS DETERMINANTS OF COMPLEXES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We refine and extend a result by Tuitman on the supports of a Bézout identity satisfied by a finite sequence of sparse Laurent polynomials without common zeroes in the toric variety associated to their supports. When the number of these polynomials is one more than the dimension of the ambient space, we obtain a formula for computing the sparse resultant as the determinant of a Koszul-type complex. Fil: D Andrea, Carlos A. Universidad de Barcelona; España Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We refine and extend a result by Tuitman on the supports of a Bézout identity satisfied by a finite sequence of sparse Laurent polynomials without common zeroes in the toric variety associated to their supports. When the number of these polynomials is one more than the dimension of the ambient space, we obtain a formula for computing the sparse resultant as the determinant of a Koszul-type complex. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/271061 D Andrea, Carlos A; Jeronimo, Gabriela Tali; Sparse Nullstellensatz, Resultants, and Determinants of Complexes; Oxford University Press; International Mathematics Research Notices; 2025; 12; 6-2025; 1-23 1073-7928 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/271061 |
identifier_str_mv |
D Andrea, Carlos A; Jeronimo, Gabriela Tali; Sparse Nullstellensatz, Resultants, and Determinants of Complexes; Oxford University Press; International Mathematics Research Notices; 2025; 12; 6-2025; 1-23 1073-7928 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2025/12/rnaf174/8171535?redirectedFrom=fulltext info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnaf174 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2407.13450 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613868385468416 |
score |
13.070432 |