Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients
- Autores
- D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give upper bounds for the differential Nullstellensatz in the case of ordinary systems of differential algebraic equations over any field of constants K of characteristic 0. Let x be a set of n differential variables, f a finite family of differential polynomials in the ring K{x} and fεK{x} another polynomial which vanishes at every solution of the differential equation system f=0 in any differentially closed field containing K. Let d max{deg(f),deg(f)} and max{2,ord(f),ord(f)}. We show that fM belongs to the algebraic ideal generated by the successive derivatives of f of order at most L=(nd)2c(n)3, for a suitable universal constant c>0, and M=dn(+L+1). The previously known bounds for L and M are not elementary recursive.
Fil: Lisi D'Alfonso. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Pablo Solernó. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
DAE SYSTEMS
DIFFERENTIAL ALGEBRA
DIFFERENTIAL ELIMINATION
DIFFERENTIAL HILBERT NULLSTELLENSATZ - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93869
Ver los metadatos del registro completo
id |
CONICETDig_c82fd8e8a3b979d9beb588240b1ecb43 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93869 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Effective differential Nullstellensatz for ordinary DAE systems with constant coefficientsD'Alfonso, LisiJeronimo, Gabriela TaliSolernó, Pablo LuisDAE SYSTEMSDIFFERENTIAL ALGEBRADIFFERENTIAL ELIMINATIONDIFFERENTIAL HILBERT NULLSTELLENSATZhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give upper bounds for the differential Nullstellensatz in the case of ordinary systems of differential algebraic equations over any field of constants K of characteristic 0. Let x be a set of n differential variables, f a finite family of differential polynomials in the ring K{x} and fεK{x} another polynomial which vanishes at every solution of the differential equation system f=0 in any differentially closed field containing K. Let d max{deg(f),deg(f)} and max{2,ord(f),ord(f)}. We show that fM belongs to the algebraic ideal generated by the successive derivatives of f of order at most L=(nd)2c(n)3, for a suitable universal constant c>0, and M=dn(+L+1). The previously known bounds for L and M are not elementary recursive.Fil: Lisi D'Alfonso. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaFil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Pablo Solernó. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93869D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis; Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients; Academic Press Inc Elsevier Science; Journal Of Complexity; 30; 5; 10-2014; 588-6030885-064XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2014.01.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885064X14000028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:30Zoai:ri.conicet.gov.ar:11336/93869instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:30.899CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients |
title |
Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients |
spellingShingle |
Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients D'Alfonso, Lisi DAE SYSTEMS DIFFERENTIAL ALGEBRA DIFFERENTIAL ELIMINATION DIFFERENTIAL HILBERT NULLSTELLENSATZ |
title_short |
Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients |
title_full |
Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients |
title_fullStr |
Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients |
title_full_unstemmed |
Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients |
title_sort |
Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients |
dc.creator.none.fl_str_mv |
D'Alfonso, Lisi Jeronimo, Gabriela Tali Solernó, Pablo Luis |
author |
D'Alfonso, Lisi |
author_facet |
D'Alfonso, Lisi Jeronimo, Gabriela Tali Solernó, Pablo Luis |
author_role |
author |
author2 |
Jeronimo, Gabriela Tali Solernó, Pablo Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DAE SYSTEMS DIFFERENTIAL ALGEBRA DIFFERENTIAL ELIMINATION DIFFERENTIAL HILBERT NULLSTELLENSATZ |
topic |
DAE SYSTEMS DIFFERENTIAL ALGEBRA DIFFERENTIAL ELIMINATION DIFFERENTIAL HILBERT NULLSTELLENSATZ |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give upper bounds for the differential Nullstellensatz in the case of ordinary systems of differential algebraic equations over any field of constants K of characteristic 0. Let x be a set of n differential variables, f a finite family of differential polynomials in the ring K{x} and fεK{x} another polynomial which vanishes at every solution of the differential equation system f=0 in any differentially closed field containing K. Let d max{deg(f),deg(f)} and max{2,ord(f),ord(f)}. We show that fM belongs to the algebraic ideal generated by the successive derivatives of f of order at most L=(nd)2c(n)3, for a suitable universal constant c>0, and M=dn(+L+1). The previously known bounds for L and M are not elementary recursive. Fil: Lisi D'Alfonso. Universidad de Buenos Aires. Ciclo Básico Común; Argentina Fil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Pablo Solernó. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We give upper bounds for the differential Nullstellensatz in the case of ordinary systems of differential algebraic equations over any field of constants K of characteristic 0. Let x be a set of n differential variables, f a finite family of differential polynomials in the ring K{x} and fεK{x} another polynomial which vanishes at every solution of the differential equation system f=0 in any differentially closed field containing K. Let d max{deg(f),deg(f)} and max{2,ord(f),ord(f)}. We show that fM belongs to the algebraic ideal generated by the successive derivatives of f of order at most L=(nd)2c(n)3, for a suitable universal constant c>0, and M=dn(+L+1). The previously known bounds for L and M are not elementary recursive. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93869 D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis; Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients; Academic Press Inc Elsevier Science; Journal Of Complexity; 30; 5; 10-2014; 588-603 0885-064X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93869 |
identifier_str_mv |
D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis; Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients; Academic Press Inc Elsevier Science; Journal Of Complexity; 30; 5; 10-2014; 588-603 0885-064X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2014.01.001 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885064X14000028 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980403787333632 |
score |
12.993085 |