Maximal operators associated with Generalized Hermite polynomials and function expansions

Autores
Forzani, Liliana Maria; Sasso. Emanuela; Scotto, Roberto Aníbal
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the weak and strong type boundedness of maximal heat?diffusion operators associated with the system of generalized Hermite polynomials and with two different systems of generalized Hermite functions. We also give a necessary background to define Sobolev spaces in this context.
Fil: Forzani, Liliana Maria. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica;
Fil: Sasso. Emanuela. Universita Di Genova; Italia;
Fil: Scotto, Roberto Aníbal. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica;
Materia
Generalized Hermite polynomials and fuctions
Heat-diffusion semigroups
Maximal operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/1494

id CONICETDig_1850f4f36318433f7d3c71355bc6c6a7
oai_identifier_str oai:ri.conicet.gov.ar:11336/1494
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Maximal operators associated with Generalized Hermite polynomials and function expansionsForzani, Liliana MariaSasso. EmanuelaScotto, Roberto AníbalGeneralized Hermite polynomials and fuctionsHeat-diffusion semigroupsMaximal operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the weak and strong type boundedness of maximal heat?diffusion operators associated with the system of generalized Hermite polynomials and with two different systems of generalized Hermite functions. We also give a necessary background to define Sobolev spaces in this context.Fil: Forzani, Liliana Maria. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica;Fil: Sasso. Emanuela. Universita Di Genova; Italia;Fil: Scotto, Roberto Aníbal. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica;Union Matematica Argentina2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1494Forzani, Liliana Maria; Sasso. Emanuela; Scotto, Roberto Aníbal; Maximal operators associated with Generalized Hermite polynomials and function expansions; Union Matematica Argentina; Revista de la Unión Matemática Argentina; 54; 6-2013; 83-1070041-69321669-9637enginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol54info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:19:39Zoai:ri.conicet.gov.ar:11336/1494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:19:39.908CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Maximal operators associated with Generalized Hermite polynomials and function expansions
title Maximal operators associated with Generalized Hermite polynomials and function expansions
spellingShingle Maximal operators associated with Generalized Hermite polynomials and function expansions
Forzani, Liliana Maria
Generalized Hermite polynomials and fuctions
Heat-diffusion semigroups
Maximal operators
title_short Maximal operators associated with Generalized Hermite polynomials and function expansions
title_full Maximal operators associated with Generalized Hermite polynomials and function expansions
title_fullStr Maximal operators associated with Generalized Hermite polynomials and function expansions
title_full_unstemmed Maximal operators associated with Generalized Hermite polynomials and function expansions
title_sort Maximal operators associated with Generalized Hermite polynomials and function expansions
dc.creator.none.fl_str_mv Forzani, Liliana Maria
Sasso. Emanuela
Scotto, Roberto Aníbal
author Forzani, Liliana Maria
author_facet Forzani, Liliana Maria
Sasso. Emanuela
Scotto, Roberto Aníbal
author_role author
author2 Sasso. Emanuela
Scotto, Roberto Aníbal
author2_role author
author
dc.subject.none.fl_str_mv Generalized Hermite polynomials and fuctions
Heat-diffusion semigroups
Maximal operators
topic Generalized Hermite polynomials and fuctions
Heat-diffusion semigroups
Maximal operators
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the weak and strong type boundedness of maximal heat?diffusion operators associated with the system of generalized Hermite polynomials and with two different systems of generalized Hermite functions. We also give a necessary background to define Sobolev spaces in this context.
Fil: Forzani, Liliana Maria. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica;
Fil: Sasso. Emanuela. Universita Di Genova; Italia;
Fil: Scotto, Roberto Aníbal. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica;
description We study the weak and strong type boundedness of maximal heat?diffusion operators associated with the system of generalized Hermite polynomials and with two different systems of generalized Hermite functions. We also give a necessary background to define Sobolev spaces in this context.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/1494
Forzani, Liliana Maria; Sasso. Emanuela; Scotto, Roberto Aníbal; Maximal operators associated with Generalized Hermite polynomials and function expansions; Union Matematica Argentina; Revista de la Unión Matemática Argentina; 54; 6-2013; 83-107
0041-6932
1669-9637
url http://hdl.handle.net/11336/1494
identifier_str_mv Forzani, Liliana Maria; Sasso. Emanuela; Scotto, Roberto Aníbal; Maximal operators associated with Generalized Hermite polynomials and function expansions; Union Matematica Argentina; Revista de la Unión Matemática Argentina; 54; 6-2013; 83-107
0041-6932
1669-9637
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol54
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Union Matematica Argentina
publisher.none.fl_str_mv Union Matematica Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606540765888512
score 13.001348