Maximal operators associated with Generalized Hermite polynomials and function expansions
- Autores
- Forzani, Liliana Maria; Sasso. Emanuela; Scotto, Roberto Aníbal
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the weak and strong type boundedness of maximal heat?diffusion operators associated with the system of generalized Hermite polynomials and with two different systems of generalized Hermite functions. We also give a necessary background to define Sobolev spaces in this context.
Fil: Forzani, Liliana Maria. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica;
Fil: Sasso. Emanuela. Universita Di Genova; Italia;
Fil: Scotto, Roberto Aníbal. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica; - Materia
-
Generalized Hermite polynomials and fuctions
Heat-diffusion semigroups
Maximal operators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/1494
Ver los metadatos del registro completo
id |
CONICETDig_1850f4f36318433f7d3c71355bc6c6a7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/1494 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Maximal operators associated with Generalized Hermite polynomials and function expansionsForzani, Liliana MariaSasso. EmanuelaScotto, Roberto AníbalGeneralized Hermite polynomials and fuctionsHeat-diffusion semigroupsMaximal operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the weak and strong type boundedness of maximal heat?diffusion operators associated with the system of generalized Hermite polynomials and with two different systems of generalized Hermite functions. We also give a necessary background to define Sobolev spaces in this context.Fil: Forzani, Liliana Maria. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica;Fil: Sasso. Emanuela. Universita Di Genova; Italia;Fil: Scotto, Roberto Aníbal. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica;Union Matematica Argentina2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1494Forzani, Liliana Maria; Sasso. Emanuela; Scotto, Roberto Aníbal; Maximal operators associated with Generalized Hermite polynomials and function expansions; Union Matematica Argentina; Revista de la Unión Matemática Argentina; 54; 6-2013; 83-1070041-69321669-9637enginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol54info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:19:39Zoai:ri.conicet.gov.ar:11336/1494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:19:39.908CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Maximal operators associated with Generalized Hermite polynomials and function expansions |
title |
Maximal operators associated with Generalized Hermite polynomials and function expansions |
spellingShingle |
Maximal operators associated with Generalized Hermite polynomials and function expansions Forzani, Liliana Maria Generalized Hermite polynomials and fuctions Heat-diffusion semigroups Maximal operators |
title_short |
Maximal operators associated with Generalized Hermite polynomials and function expansions |
title_full |
Maximal operators associated with Generalized Hermite polynomials and function expansions |
title_fullStr |
Maximal operators associated with Generalized Hermite polynomials and function expansions |
title_full_unstemmed |
Maximal operators associated with Generalized Hermite polynomials and function expansions |
title_sort |
Maximal operators associated with Generalized Hermite polynomials and function expansions |
dc.creator.none.fl_str_mv |
Forzani, Liliana Maria Sasso. Emanuela Scotto, Roberto Aníbal |
author |
Forzani, Liliana Maria |
author_facet |
Forzani, Liliana Maria Sasso. Emanuela Scotto, Roberto Aníbal |
author_role |
author |
author2 |
Sasso. Emanuela Scotto, Roberto Aníbal |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Generalized Hermite polynomials and fuctions Heat-diffusion semigroups Maximal operators |
topic |
Generalized Hermite polynomials and fuctions Heat-diffusion semigroups Maximal operators |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the weak and strong type boundedness of maximal heat?diffusion operators associated with the system of generalized Hermite polynomials and with two different systems of generalized Hermite functions. We also give a necessary background to define Sobolev spaces in this context. Fil: Forzani, Liliana Maria. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica; Fil: Sasso. Emanuela. Universita Di Genova; Italia; Fil: Scotto, Roberto Aníbal. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol - CONICET - Santa Fe. Instituto de Matematica Aplicada; Argentina; Universidad Nacional del Litoral. Facultad de Ingenieria Quimica; |
description |
We study the weak and strong type boundedness of maximal heat?diffusion operators associated with the system of generalized Hermite polynomials and with two different systems of generalized Hermite functions. We also give a necessary background to define Sobolev spaces in this context. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/1494 Forzani, Liliana Maria; Sasso. Emanuela; Scotto, Roberto Aníbal; Maximal operators associated with Generalized Hermite polynomials and function expansions; Union Matematica Argentina; Revista de la Unión Matemática Argentina; 54; 6-2013; 83-107 0041-6932 1669-9637 |
url |
http://hdl.handle.net/11336/1494 |
identifier_str_mv |
Forzani, Liliana Maria; Sasso. Emanuela; Scotto, Roberto Aníbal; Maximal operators associated with Generalized Hermite polynomials and function expansions; Union Matematica Argentina; Revista de la Unión Matemática Argentina; 54; 6-2013; 83-107 0041-6932 1669-9637 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol54 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Union Matematica Argentina |
publisher.none.fl_str_mv |
Union Matematica Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606540765888512 |
score |
13.001348 |