Local maximal functions and operators associated to Laguerre expansions
- Autores
- Viola, Pablo Sebastian; Viviani, Beatriz Eleonora
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we get sharp conditions on a weight v which allow us to obtain some weighted inequalities for a local Hardy-Littlewood Maximal operator defined on an open set in the Euclidean n-space. This result is applied to assure a pointwise convergence of the Laguerre heat-diffusion semigroup u(x,t) = (T(t)f)(x) to f when t tends to zero for all functions f in L p(v(x)dx) for p greater than or equal to 1 and a weight v. In proving this we obtain weighted inequalities for the maximal operator associated to the Laguerre diffusion semigroup of the Laguerre differential operator of order greater than or equal to 0. Finally, as a by-product, we obtain weighted inequalities for the Riesz-Laguerre operators.
Fil: Viola, Pablo Sebastian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
HEAT DIFFUSION SEMIGROUP
LAGUERRE
LAGUERRE-RIESZ TRANSFORMS
LOCAL MAXIMAL OPERATOR
WEIGHTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100579
Ver los metadatos del registro completo
id |
CONICETDig_e0518bc21aba6a9312e0f5d43e334dbe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100579 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Local maximal functions and operators associated to Laguerre expansionsViola, Pablo SebastianViviani, Beatriz EleonoraHEAT DIFFUSION SEMIGROUPLAGUERRELAGUERRE-RIESZ TRANSFORMSLOCAL MAXIMAL OPERATORWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we get sharp conditions on a weight v which allow us to obtain some weighted inequalities for a local Hardy-Littlewood Maximal operator defined on an open set in the Euclidean n-space. This result is applied to assure a pointwise convergence of the Laguerre heat-diffusion semigroup u(x,t) = (T(t)f)(x) to f when t tends to zero for all functions f in L p(v(x)dx) for p greater than or equal to 1 and a weight v. In proving this we obtain weighted inequalities for the maximal operator associated to the Laguerre diffusion semigroup of the Laguerre differential operator of order greater than or equal to 0. Finally, as a by-product, we obtain weighted inequalities for the Riesz-Laguerre operators.Fil: Viola, Pablo Sebastian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaTohoku University2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/100579Viola, Pablo Sebastian; Viviani, Beatriz Eleonora; Local maximal functions and operators associated to Laguerre expansions; Tohoku University; Tohoku Mathematical Journal; 66; 2; 7-2014; 155-1690040-8735CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2748/tmj/1404911859info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:48Zoai:ri.conicet.gov.ar:11336/100579instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:48.354CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Local maximal functions and operators associated to Laguerre expansions |
title |
Local maximal functions and operators associated to Laguerre expansions |
spellingShingle |
Local maximal functions and operators associated to Laguerre expansions Viola, Pablo Sebastian HEAT DIFFUSION SEMIGROUP LAGUERRE LAGUERRE-RIESZ TRANSFORMS LOCAL MAXIMAL OPERATOR WEIGHTS |
title_short |
Local maximal functions and operators associated to Laguerre expansions |
title_full |
Local maximal functions and operators associated to Laguerre expansions |
title_fullStr |
Local maximal functions and operators associated to Laguerre expansions |
title_full_unstemmed |
Local maximal functions and operators associated to Laguerre expansions |
title_sort |
Local maximal functions and operators associated to Laguerre expansions |
dc.creator.none.fl_str_mv |
Viola, Pablo Sebastian Viviani, Beatriz Eleonora |
author |
Viola, Pablo Sebastian |
author_facet |
Viola, Pablo Sebastian Viviani, Beatriz Eleonora |
author_role |
author |
author2 |
Viviani, Beatriz Eleonora |
author2_role |
author |
dc.subject.none.fl_str_mv |
HEAT DIFFUSION SEMIGROUP LAGUERRE LAGUERRE-RIESZ TRANSFORMS LOCAL MAXIMAL OPERATOR WEIGHTS |
topic |
HEAT DIFFUSION SEMIGROUP LAGUERRE LAGUERRE-RIESZ TRANSFORMS LOCAL MAXIMAL OPERATOR WEIGHTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we get sharp conditions on a weight v which allow us to obtain some weighted inequalities for a local Hardy-Littlewood Maximal operator defined on an open set in the Euclidean n-space. This result is applied to assure a pointwise convergence of the Laguerre heat-diffusion semigroup u(x,t) = (T(t)f)(x) to f when t tends to zero for all functions f in L p(v(x)dx) for p greater than or equal to 1 and a weight v. In proving this we obtain weighted inequalities for the maximal operator associated to the Laguerre diffusion semigroup of the Laguerre differential operator of order greater than or equal to 0. Finally, as a by-product, we obtain weighted inequalities for the Riesz-Laguerre operators. Fil: Viola, Pablo Sebastian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
In this paper we get sharp conditions on a weight v which allow us to obtain some weighted inequalities for a local Hardy-Littlewood Maximal operator defined on an open set in the Euclidean n-space. This result is applied to assure a pointwise convergence of the Laguerre heat-diffusion semigroup u(x,t) = (T(t)f)(x) to f when t tends to zero for all functions f in L p(v(x)dx) for p greater than or equal to 1 and a weight v. In proving this we obtain weighted inequalities for the maximal operator associated to the Laguerre diffusion semigroup of the Laguerre differential operator of order greater than or equal to 0. Finally, as a by-product, we obtain weighted inequalities for the Riesz-Laguerre operators. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100579 Viola, Pablo Sebastian; Viviani, Beatriz Eleonora; Local maximal functions and operators associated to Laguerre expansions; Tohoku University; Tohoku Mathematical Journal; 66; 2; 7-2014; 155-169 0040-8735 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100579 |
identifier_str_mv |
Viola, Pablo Sebastian; Viviani, Beatriz Eleonora; Local maximal functions and operators associated to Laguerre expansions; Tohoku University; Tohoku Mathematical Journal; 66; 2; 7-2014; 155-169 0040-8735 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2748/tmj/1404911859 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Tohoku University |
publisher.none.fl_str_mv |
Tohoku University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613857714110464 |
score |
13.070432 |