Local maximal functions and operators associated to Laguerre expansions

Autores
Viola, Pablo Sebastian; Viviani, Beatriz Eleonora
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we get sharp conditions on a weight v which allow us to obtain some weighted inequalities for a local Hardy-Littlewood Maximal operator defined on an open set in the Euclidean n-space. This result is applied to assure a pointwise convergence of the Laguerre heat-diffusion semigroup u(x,t) = (T(t)f)(x) to f when t tends to zero for all functions f in L p(v(x)dx) for p greater than or equal to 1 and a weight v. In proving this we obtain weighted inequalities for the maximal operator associated to the Laguerre diffusion semigroup of the Laguerre differential operator of order greater than or equal to 0. Finally, as a by-product, we obtain weighted inequalities for the Riesz-Laguerre operators.
Fil: Viola, Pablo Sebastian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
HEAT DIFFUSION SEMIGROUP
LAGUERRE
LAGUERRE-RIESZ TRANSFORMS
LOCAL MAXIMAL OPERATOR
WEIGHTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100579

id CONICETDig_e0518bc21aba6a9312e0f5d43e334dbe
oai_identifier_str oai:ri.conicet.gov.ar:11336/100579
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Local maximal functions and operators associated to Laguerre expansionsViola, Pablo SebastianViviani, Beatriz EleonoraHEAT DIFFUSION SEMIGROUPLAGUERRELAGUERRE-RIESZ TRANSFORMSLOCAL MAXIMAL OPERATORWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we get sharp conditions on a weight v which allow us to obtain some weighted inequalities for a local Hardy-Littlewood Maximal operator defined on an open set in the Euclidean n-space. This result is applied to assure a pointwise convergence of the Laguerre heat-diffusion semigroup u(x,t) = (T(t)f)(x) to f when t tends to zero for all functions f in L p(v(x)dx) for p greater than or equal to 1 and a weight v. In proving this we obtain weighted inequalities for the maximal operator associated to the Laguerre diffusion semigroup of the Laguerre differential operator of order greater than or equal to 0. Finally, as a by-product, we obtain weighted inequalities for the Riesz-Laguerre operators.Fil: Viola, Pablo Sebastian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaTohoku University2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/100579Viola, Pablo Sebastian; Viviani, Beatriz Eleonora; Local maximal functions and operators associated to Laguerre expansions; Tohoku University; Tohoku Mathematical Journal; 66; 2; 7-2014; 155-1690040-8735CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2748/tmj/1404911859info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:48Zoai:ri.conicet.gov.ar:11336/100579instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:48.354CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Local maximal functions and operators associated to Laguerre expansions
title Local maximal functions and operators associated to Laguerre expansions
spellingShingle Local maximal functions and operators associated to Laguerre expansions
Viola, Pablo Sebastian
HEAT DIFFUSION SEMIGROUP
LAGUERRE
LAGUERRE-RIESZ TRANSFORMS
LOCAL MAXIMAL OPERATOR
WEIGHTS
title_short Local maximal functions and operators associated to Laguerre expansions
title_full Local maximal functions and operators associated to Laguerre expansions
title_fullStr Local maximal functions and operators associated to Laguerre expansions
title_full_unstemmed Local maximal functions and operators associated to Laguerre expansions
title_sort Local maximal functions and operators associated to Laguerre expansions
dc.creator.none.fl_str_mv Viola, Pablo Sebastian
Viviani, Beatriz Eleonora
author Viola, Pablo Sebastian
author_facet Viola, Pablo Sebastian
Viviani, Beatriz Eleonora
author_role author
author2 Viviani, Beatriz Eleonora
author2_role author
dc.subject.none.fl_str_mv HEAT DIFFUSION SEMIGROUP
LAGUERRE
LAGUERRE-RIESZ TRANSFORMS
LOCAL MAXIMAL OPERATOR
WEIGHTS
topic HEAT DIFFUSION SEMIGROUP
LAGUERRE
LAGUERRE-RIESZ TRANSFORMS
LOCAL MAXIMAL OPERATOR
WEIGHTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we get sharp conditions on a weight v which allow us to obtain some weighted inequalities for a local Hardy-Littlewood Maximal operator defined on an open set in the Euclidean n-space. This result is applied to assure a pointwise convergence of the Laguerre heat-diffusion semigroup u(x,t) = (T(t)f)(x) to f when t tends to zero for all functions f in L p(v(x)dx) for p greater than or equal to 1 and a weight v. In proving this we obtain weighted inequalities for the maximal operator associated to the Laguerre diffusion semigroup of the Laguerre differential operator of order greater than or equal to 0. Finally, as a by-product, we obtain weighted inequalities for the Riesz-Laguerre operators.
Fil: Viola, Pablo Sebastian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description In this paper we get sharp conditions on a weight v which allow us to obtain some weighted inequalities for a local Hardy-Littlewood Maximal operator defined on an open set in the Euclidean n-space. This result is applied to assure a pointwise convergence of the Laguerre heat-diffusion semigroup u(x,t) = (T(t)f)(x) to f when t tends to zero for all functions f in L p(v(x)dx) for p greater than or equal to 1 and a weight v. In proving this we obtain weighted inequalities for the maximal operator associated to the Laguerre diffusion semigroup of the Laguerre differential operator of order greater than or equal to 0. Finally, as a by-product, we obtain weighted inequalities for the Riesz-Laguerre operators.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100579
Viola, Pablo Sebastian; Viviani, Beatriz Eleonora; Local maximal functions and operators associated to Laguerre expansions; Tohoku University; Tohoku Mathematical Journal; 66; 2; 7-2014; 155-169
0040-8735
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100579
identifier_str_mv Viola, Pablo Sebastian; Viviani, Beatriz Eleonora; Local maximal functions and operators associated to Laguerre expansions; Tohoku University; Tohoku Mathematical Journal; 66; 2; 7-2014; 155-169
0040-8735
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2748/tmj/1404911859
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Tohoku University
publisher.none.fl_str_mv Tohoku University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613857714110464
score 13.070432