On the maximal function for the generalized Ornstein-Uhlenbeck semigroup
- Autores
- Betancor, Jorge; Forzani, Liliana Maria; Scotto, Roberto Aníbal; Urbina, Wilfredo O.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this note we consider the maximal function for the generalized Ornstein-Uhlenbeck semigroup in R associated with the generalized Hermite polynomials (Hμn) and prove that it is weak type (1,1) with respect to dλμ(x) = |x|2μ e−|x|2dx, for μ > –1/2 as well as bounded on Lp(dλμ) for p > 1.
Fil: Betancor, Jorge. Universidad de La Laguna; España
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Scotto, Roberto Aníbal. Universidad Nacional del Litoral; Argentina
Fil: Urbina, Wilfredo O.. University of New Mexico; Estados Unidos. Universidad Central de Venezuela, Facultad de Ciencias; Venezuela - Materia
-
Generalized Hermite Orthogonal Polynomials
Maximal Functions
Gaussian Measure
Nondoubling Measures - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84284
Ver los metadatos del registro completo
| id |
CONICETDig_778b30ff7578f6608425997f712e8556 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84284 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On the maximal function for the generalized Ornstein-Uhlenbeck semigroupBetancor, JorgeForzani, Liliana MariaScotto, Roberto AníbalUrbina, Wilfredo O.Generalized Hermite Orthogonal PolynomialsMaximal FunctionsGaussian MeasureNondoubling Measureshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note we consider the maximal function for the generalized Ornstein-Uhlenbeck semigroup in R associated with the generalized Hermite polynomials (Hμn) and prove that it is weak type (1,1) with respect to dλμ(x) = |x|2μ e−|x|2dx, for μ > –1/2 as well as bounded on Lp(dλμ) for p > 1.Fil: Betancor, Jorge. Universidad de La Laguna; EspañaFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Scotto, Roberto Aníbal. Universidad Nacional del Litoral; ArgentinaFil: Urbina, Wilfredo O.. University of New Mexico; Estados Unidos. Universidad Central de Venezuela, Facultad de Ciencias; VenezuelaNatl Inquiry Services Centre Pty Ltd2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84284Betancor, Jorge; Forzani, Liliana Maria; Scotto, Roberto Aníbal; Urbina, Wilfredo O.; On the maximal function for the generalized Ornstein-Uhlenbeck semigroup; Natl Inquiry Services Centre Pty Ltd; Quaestiones Mathematicae; 30; 4; 12-2007; 471-4821607-3606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2989/16073600709486214info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:52:33Zoai:ri.conicet.gov.ar:11336/84284instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:52:33.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On the maximal function for the generalized Ornstein-Uhlenbeck semigroup |
| title |
On the maximal function for the generalized Ornstein-Uhlenbeck semigroup |
| spellingShingle |
On the maximal function for the generalized Ornstein-Uhlenbeck semigroup Betancor, Jorge Generalized Hermite Orthogonal Polynomials Maximal Functions Gaussian Measure Nondoubling Measures |
| title_short |
On the maximal function for the generalized Ornstein-Uhlenbeck semigroup |
| title_full |
On the maximal function for the generalized Ornstein-Uhlenbeck semigroup |
| title_fullStr |
On the maximal function for the generalized Ornstein-Uhlenbeck semigroup |
| title_full_unstemmed |
On the maximal function for the generalized Ornstein-Uhlenbeck semigroup |
| title_sort |
On the maximal function for the generalized Ornstein-Uhlenbeck semigroup |
| dc.creator.none.fl_str_mv |
Betancor, Jorge Forzani, Liliana Maria Scotto, Roberto Aníbal Urbina, Wilfredo O. |
| author |
Betancor, Jorge |
| author_facet |
Betancor, Jorge Forzani, Liliana Maria Scotto, Roberto Aníbal Urbina, Wilfredo O. |
| author_role |
author |
| author2 |
Forzani, Liliana Maria Scotto, Roberto Aníbal Urbina, Wilfredo O. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Generalized Hermite Orthogonal Polynomials Maximal Functions Gaussian Measure Nondoubling Measures |
| topic |
Generalized Hermite Orthogonal Polynomials Maximal Functions Gaussian Measure Nondoubling Measures |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this note we consider the maximal function for the generalized Ornstein-Uhlenbeck semigroup in R associated with the generalized Hermite polynomials (Hμn) and prove that it is weak type (1,1) with respect to dλμ(x) = |x|2μ e−|x|2dx, for μ > –1/2 as well as bounded on Lp(dλμ) for p > 1. Fil: Betancor, Jorge. Universidad de La Laguna; España Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Scotto, Roberto Aníbal. Universidad Nacional del Litoral; Argentina Fil: Urbina, Wilfredo O.. University of New Mexico; Estados Unidos. Universidad Central de Venezuela, Facultad de Ciencias; Venezuela |
| description |
In this note we consider the maximal function for the generalized Ornstein-Uhlenbeck semigroup in R associated with the generalized Hermite polynomials (Hμn) and prove that it is weak type (1,1) with respect to dλμ(x) = |x|2μ e−|x|2dx, for μ > –1/2 as well as bounded on Lp(dλμ) for p > 1. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84284 Betancor, Jorge; Forzani, Liliana Maria; Scotto, Roberto Aníbal; Urbina, Wilfredo O.; On the maximal function for the generalized Ornstein-Uhlenbeck semigroup; Natl Inquiry Services Centre Pty Ltd; Quaestiones Mathematicae; 30; 4; 12-2007; 471-482 1607-3606 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/84284 |
| identifier_str_mv |
Betancor, Jorge; Forzani, Liliana Maria; Scotto, Roberto Aníbal; Urbina, Wilfredo O.; On the maximal function for the generalized Ornstein-Uhlenbeck semigroup; Natl Inquiry Services Centre Pty Ltd; Quaestiones Mathematicae; 30; 4; 12-2007; 471-482 1607-3606 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2989/16073600709486214 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Natl Inquiry Services Centre Pty Ltd |
| publisher.none.fl_str_mv |
Natl Inquiry Services Centre Pty Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598185434415104 |
| score |
12.976206 |