On the maximal function for the generalized Ornstein-Uhlenbeck semigroup

Autores
Betancor, Jorge; Forzani, Liliana Maria; Scotto, Roberto Aníbal; Urbina, Wilfredo O.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this note we consider the maximal function for the generalized Ornstein-Uhlenbeck semigroup in R associated with the generalized Hermite polynomials (Hμn) and prove that it is weak type (1,1) with respect to dλμ(x) = |x|2μ e−|x|2dx, for μ > –1/2 as well as bounded on Lp(dλμ) for p > 1.
Fil: Betancor, Jorge. Universidad de La Laguna; España
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Scotto, Roberto Aníbal. Universidad Nacional del Litoral; Argentina
Fil: Urbina, Wilfredo O.. University of New Mexico; Estados Unidos. Universidad Central de Venezuela, Facultad de Ciencias; Venezuela
Materia
Generalized Hermite Orthogonal Polynomials
Maximal Functions
Gaussian Measure
Nondoubling Measures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84284

id CONICETDig_778b30ff7578f6608425997f712e8556
oai_identifier_str oai:ri.conicet.gov.ar:11336/84284
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the maximal function for the generalized Ornstein-Uhlenbeck semigroupBetancor, JorgeForzani, Liliana MariaScotto, Roberto AníbalUrbina, Wilfredo O.Generalized Hermite Orthogonal PolynomialsMaximal FunctionsGaussian MeasureNondoubling Measureshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note we consider the maximal function for the generalized Ornstein-Uhlenbeck semigroup in R associated with the generalized Hermite polynomials (Hμn) and prove that it is weak type (1,1) with respect to dλμ(x) = |x|2μ e−|x|2dx, for μ > –1/2 as well as bounded on Lp(dλμ) for p > 1.Fil: Betancor, Jorge. Universidad de La Laguna; EspañaFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Scotto, Roberto Aníbal. Universidad Nacional del Litoral; ArgentinaFil: Urbina, Wilfredo O.. University of New Mexico; Estados Unidos. Universidad Central de Venezuela, Facultad de Ciencias; VenezuelaNatl Inquiry Services Centre Pty Ltd2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84284Betancor, Jorge; Forzani, Liliana Maria; Scotto, Roberto Aníbal; Urbina, Wilfredo O.; On the maximal function for the generalized Ornstein-Uhlenbeck semigroup; Natl Inquiry Services Centre Pty Ltd; Quaestiones Mathematicae; 30; 4; 12-2007; 471-4821607-3606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2989/16073600709486214info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:52:33Zoai:ri.conicet.gov.ar:11336/84284instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:52:33.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the maximal function for the generalized Ornstein-Uhlenbeck semigroup
title On the maximal function for the generalized Ornstein-Uhlenbeck semigroup
spellingShingle On the maximal function for the generalized Ornstein-Uhlenbeck semigroup
Betancor, Jorge
Generalized Hermite Orthogonal Polynomials
Maximal Functions
Gaussian Measure
Nondoubling Measures
title_short On the maximal function for the generalized Ornstein-Uhlenbeck semigroup
title_full On the maximal function for the generalized Ornstein-Uhlenbeck semigroup
title_fullStr On the maximal function for the generalized Ornstein-Uhlenbeck semigroup
title_full_unstemmed On the maximal function for the generalized Ornstein-Uhlenbeck semigroup
title_sort On the maximal function for the generalized Ornstein-Uhlenbeck semigroup
dc.creator.none.fl_str_mv Betancor, Jorge
Forzani, Liliana Maria
Scotto, Roberto Aníbal
Urbina, Wilfredo O.
author Betancor, Jorge
author_facet Betancor, Jorge
Forzani, Liliana Maria
Scotto, Roberto Aníbal
Urbina, Wilfredo O.
author_role author
author2 Forzani, Liliana Maria
Scotto, Roberto Aníbal
Urbina, Wilfredo O.
author2_role author
author
author
dc.subject.none.fl_str_mv Generalized Hermite Orthogonal Polynomials
Maximal Functions
Gaussian Measure
Nondoubling Measures
topic Generalized Hermite Orthogonal Polynomials
Maximal Functions
Gaussian Measure
Nondoubling Measures
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this note we consider the maximal function for the generalized Ornstein-Uhlenbeck semigroup in R associated with the generalized Hermite polynomials (Hμn) and prove that it is weak type (1,1) with respect to dλμ(x) = |x|2μ e−|x|2dx, for μ > –1/2 as well as bounded on Lp(dλμ) for p > 1.
Fil: Betancor, Jorge. Universidad de La Laguna; España
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Scotto, Roberto Aníbal. Universidad Nacional del Litoral; Argentina
Fil: Urbina, Wilfredo O.. University of New Mexico; Estados Unidos. Universidad Central de Venezuela, Facultad de Ciencias; Venezuela
description In this note we consider the maximal function for the generalized Ornstein-Uhlenbeck semigroup in R associated with the generalized Hermite polynomials (Hμn) and prove that it is weak type (1,1) with respect to dλμ(x) = |x|2μ e−|x|2dx, for μ > –1/2 as well as bounded on Lp(dλμ) for p > 1.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84284
Betancor, Jorge; Forzani, Liliana Maria; Scotto, Roberto Aníbal; Urbina, Wilfredo O.; On the maximal function for the generalized Ornstein-Uhlenbeck semigroup; Natl Inquiry Services Centre Pty Ltd; Quaestiones Mathematicae; 30; 4; 12-2007; 471-482
1607-3606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84284
identifier_str_mv Betancor, Jorge; Forzani, Liliana Maria; Scotto, Roberto Aníbal; Urbina, Wilfredo O.; On the maximal function for the generalized Ornstein-Uhlenbeck semigroup; Natl Inquiry Services Centre Pty Ltd; Quaestiones Mathematicae; 30; 4; 12-2007; 471-482
1607-3606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2989/16073600709486214
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Natl Inquiry Services Centre Pty Ltd
publisher.none.fl_str_mv Natl Inquiry Services Centre Pty Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848598185434415104
score 12.976206